• Title/Summary/Keyword: Histone deacetylase 6

Search Result 53, Processing Time 0.029 seconds

Effect of Valproic acid, a Histone Deacetylase Inhibitor, on the Expression of Pluripotency and Neural Crest Specific Marker Genes in Murine Multipotent Skin Precursor Cells

  • Hong, Ji-Hoon;Park, Sang-Kyu;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.209-214
    • /
    • 2010
  • Cells that have endogenous multipotent properties can be used as a starting source for the generation of induced pluripotent cells (iPSC). In addition, small molecules associated with epigenetic reprogramming are also widely used to enhance the multi- or pluripotency of such cells. Skinderived precursor cells (SKPs) are multipotent, sphereforming and embryonic neural crest-related precursor cells. These cells can be isolated from a juvenile or adult mammalian dermis. SKPs are also an efficient starting cell source for reprogramming and the generation of iPSCs because of the high expression levels of Sox2 and Klf4 in these cells as well as their endogenous multipotency. In this study, valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, was tested in the generation of iPSCs as a potential enhancer of the reprogramming potential of SKPs. SKPs were isolated from the back skins of 5-6 week old C57BL/6 X DBA/2 F1 mice. After passage 3, the SKPs was treated with 2 mM of VPA and the quantitative real time RT-PCR was performed to quantify the expression of Oct4 and Klf4 (pluripotency specific genes), and Snai2 and Ngfr (neural crest specific genes). The results show that Oct4 and Klf4 expression was decreased by VPA treatment. However, there were no significant changes in neural crest specific gene expression following VPA treatment. Hence, although VPA is one of the most potent of the HDAC inhibitors, it does not enhance the reprogramming of multipotent skin precursor cells in mice.

Epigenomic Alteration in Replicative Senescent-mesenchymal Stem Cells (중간엽줄기세포의 노화에 따른 후생유전학적 변화)

  • Oh, Youn Seo;Cho, Goang-Won
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.724-731
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) are characterized by their multipotency capacity, which allows them to differentiate into diverse cell types (bone, cartilage, fat, tendon, and neuron-like cells) and secrete a variety of trophic factors (ANG, FGF-2, HGF, IGF-1, PIGF, SDF-1α, TGF-β, and VEGF). MSCs can be easily isolated from human bone-marrow, fat, and umbilical-cord tissues. These features indicate that MSCs might be of use in stem-cell therapy. However, MSCs undergo cellular senescence during long-term expansion, and this is accompanied by functional declines in stem-cell potency. In the human body, because of their senescence and declines in their microenvironmental niches stem cells fail to maintain tissue homeostasis, and as a result, senescent cells accumulate in tissues. This can lead to age-related diseases, including degenerative disorders and cancers. Recent studies suggest that the number of histone modifications to stem cells’ genomes and aberrant alterations to their DNA methylation increase as stem cells progress into senescence. These epigenetic alterations have been partly reversed with treatments in which DNA methyltransferase (DNMT) inhibitors or histone deacetylase (HDAC) inhibitors are introduced into replicative senescent-MSCs. This review focuses on epigenetic alteration in replicative senescent-MSCs and explains how epigenetic modifications are widely associated with stem-cell senescences such as differentiation, proliferation, migration, calcium signaling, and apoptosis.

HDAC6 siRNA Inhibits Proliferation and Induces Apoptosis of HeLa Cells and its Related Molecular Mechanism

  • Qin, Hai-Xia;Cui, Hong-Kai;Pan, Ying;Yang, Jun;Ren, Yan-Fang;Hua, Cai-Hong;Hua, Fang-Fang;Qiao, Yu-Huan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3367-3371
    • /
    • 2012
  • Objective: To investigate the effects of histone deacetylase 6 (HDAC6) siRNA on cell proliferation and cell apoptosis of the HeLa cervical carcinoma cell line and the molecular mechanisms involved. Methods: Division was into three groups: A, the untreated group; B, the control siRNA group; and C, the HDAC6 siRNA group. Lipofectamine 2000 was used for siRNA transfection, and Western blot analysis was used to determine the protein levels. Cell proliferation and apoptosis were characterized using a CCK-8 assay and flow cytometry, respectively. Results: HDAC6 protein expression in the HDAC6 siRNA-transfection group was significantly lower (P < 0.05) than in the untreated and control siRNA groups. The CCK-8 kit results demonstrated that the proliferation of HeLa cells was clearly inhibited in the HDAC6 siRNA transfection group (P < 0.05). In addition, flow cytometry revealed that the early apoptotic rate ($26.0%{\pm}0.87%$) was significantly elevated (P < 0.05) as compared with the untreated group ($10.6%{\pm}1.19%$) and control siRNA group ($8.61%{\pm}0.98%$). Furthermore, Western blot analysis indicated that bcl-2 protein expression in the HDAC6 siRNA-transfection group was down-regulated, whereas the expression of p21 and bax was up-regulated. Conclusion: HDAC6 plays an essential role in the occurrence and development of cervical carcinoma, and the down-regulation of HDAC6 expression may be useful molecular therapeutic method.

Valproic Acid Exposure of Pregnant Rats During Organogenesis Disturbs Pancreas Development in Insulin Synthesis and Secretion of the Offspring

  • Komariah, Komariah;Manalu, Wasmen;Kiranadi, Bambang;Winarto, Adi;Handharyani, Ekowati;Roeslan, M. Orliando
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.173-182
    • /
    • 2018
  • Valproic acid (VPA) plays a role in histone modifications that eventually inhibit the activity of histone deacetylase (HDAC), and will affect the expressions of genes Pdx1, Nkx6.1, and Ngn3 during pancreatic organogenesis. This experiment was designed to study the effect of VPA exposure in pregnant rats on the activity of HDAC that controls the expression of genes regulating the development of beta cells in the pancreas to synthesize and secrete insulin. This study used 30 pregnant Sprague-Dawley rats, divided into 4 groups, as follows: (1) a control group of pregnant rats without VPA administration, (2) pregnant rats administered with 250 mg VPA on day 10 of pregnancy, (3) pregnant rats administered with 250 mg VPA on day 13 of pregnancy, and (4) pregnant rats administered with 250 mg VPA on day 16 of pregnancy. Eighty-four newborn rats born to control rats and rats administered with VPA on days 10, 13, and 16 of pregnancy were used to measure serum glucose, insulin, DNA, RNA, and ratio of RNA/DNA concentrations in the pancreas and to observe the microscopical condition of the pancreas at the ages of 4 to 32 weeks postpartum with 4-week intervals. The results showed that at the age of 32 weeks, the offspring of pregnant rats administered with 250 mg VPA on days 10, 13, and 16 of pregnancy had higher serum glucose concentrations and lower serum insulin concentrations, followed by decreased concentrations of RNA, and the ratio of RNA/DNA in the pancreas. Microscopical observations showed that the pancreas of the rats born to pregnant rats administered with VPA during pregnancy had low immunoreaction to insulin. The exposure of pregnant rats to VPA during pregnancy disturbs organogenesis of the pancreas of the embryos that eventually disturb the insulin production in the beta cells indicated by the decreased insulin secretion during postnatal life.

A Novel Suberoylanilide Hydroxamic Acid Histone Deacetylase Inhibitor Derivative, N25, Exhibiting Improved Antitumor Activity in both Human U251 and H460 Cells

  • Zhang, Song;Huang, Wei-Bin;Wu, Li;Wang, Lai-You;Ye, Lian-Bao;Feng, Bing-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4331-4338
    • /
    • 2014
  • $N^1$-(2, 5-dimethoxyphenyl)-$N^8$-hydroxyoctanediamide (N25) is a novel SAHA cap derivative of HDACi, with a patent (No. CN 103159646). This invention is a hydroxamic acid compound with a structural formula of $RNHCO(CH_2)6CONHOH$ (wherein R=2, 5dimethoxyaniline), a pharmaceutically acceptable salt which is soluble. In the present study, we investigated the effects of N25 with regard to drug distribution and molecular docking, and anti-proliferation, apoptosis, cell cycling, and $LD_{50}$. First, we designed a molecular approach for modeling selected SAHA derivatives based on available structural information regarding human HDAC8 in complex with SAHA (PDB code 1T69). N25 was found to be stabilized by direct interaction with the HDAC8. Anti-proliferative activity was observed in human glioma U251, U87, T98G cells and human lung cancer H460, A549, H1299 cells at moderate concentrations ($0.5-30{\mu}M$). Compared with SAHA, N25 displayed an increased antitumor activity in U251 and H460 cells. We further analyzed cell death mechanisms activated by N25 in U251 and H460 cells. N25 significantly increased acetylation of Histone 3 and inhibited HDAC4. On RT-PCR analysis, N25 increased the mRNA levels of p21, however, decreased the levels of p53. These resulted in promotion of apoptosis, inducing G0/G1 arrest in U251 cells and G2/M arrest in H460 cells in a time-dependent and dose-dependent manner. In addition, N25 was able to distribute to brain tissue through the blood-brain barrier of mice ($LD_{50}$: 240.840mg/kg). In conclusion, our findings demonstrate that N25 will provide an invaluable tool to investigate the molecular mechanism with potential chemotherapeutic value in several malignancies, especially human glioma.

Trichostatin A, a Histone Deacetylase Inhibitor, Potentiated Cytotoxic Effect of ionizing Radiation in Human Head and Neck Cancer Cell Lines (히스톤탈아세틸효소 억제제 Trichostatin A에 의한 인간 두경부암 셰포주의 방사선 감수성 증강)

  • Kim, Jin Ho;Shin, Jin Hee;Chie, Eui Kyu;Wu, Hong-Gyun;Kim, Jae Sung;Kim, Il Han;Ha, Sung Whan;Park, Charn Il;Kang, Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.138-141
    • /
    • 2004
  • Purpose : We have previously reported that human glioblastoma cells are sensitized to radiation-induced death after their exposure to trichostatin A (TSA), a histone deacetylase inhibitor (HDAC-1), prior to the irradiation. We aimed to measure the magnitude of the radiosensitizing effect of TSA in human head and neck cancer cell lines. Materials and Methods : Human head and neck cancer cell lines, HN-3 and HN-9, were exposed to 0, 50, 100, and 200 nM TSA for 18 hr prior to irradiation. Then, the TSA-treated cells were irradiated with 0, 2, 4, 6, and 8 Gy, and cell survival was measured by clonogenic assay. Results : Pre-irradiation exposure to TSA was found to radiosensitize HN-3 and HN-9 cell lines. In HN-9 cells, the fraction surviving after 2 Gy (SF2) was significantly reduced by treatment of TSA at concentration as low as 50 nM. However, a treatment with 200 nM TSA was required to significantly decrease SF2 in the HN-3 cell line. SER of pre-irradiation treatment with 200 nM TSA was 1.84 in HN-3 and 7.24 in HN-9, respectively. Conclusions : Our results clearly showed that human head and neck cancer cell lines can be sensitized to ionizing radiation by pre-irradiation inhibition of histone deacetylase (HDAC) using TSA, and that this potentiation might well be a general phenomenon.

Twist2 Regulates CD7 Expression and Galectin-1-Induced Apoptosis in Mature T-Cells

  • Koh, Han Seok;Lee, Changjin;Lee, Kwang Soo;Park, Eun Jung;Seong, Rho H.;Hong, Seokmann;Jeon, Sung Ho
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.553-558
    • /
    • 2009
  • In the periphery, a galectin-1 receptor, CD7, plays crucial roles in galectin-1-mediated apoptosis of activated T-cells as well as progression of T-lymphoma. Previously, we demonstrated that $NF-{\kappa}B$ downregulated CD7 gene expression through the p38 MAPK pathway in developing immature thymocytes. However, its regulatory pathway is not well understood in functional mature T-cells. Here, we show that CD7 expression was downregulated by Twist2 in Jurkat cells, a human acute T-cell lymphoma cell line, and in EL4 cells, a mature murine T-cell lymphoma cell line. Furthermore, ectopic expression of Twist2 in Jurkat cells reduced galectin-1-induced apoptosis. While full-length Twist2 decreased CD7 promoter activity, a C-terminal deletion form of Twist2 reversed its inhibition, suggesting an important role of the C-terminus in CD7 regulation. In addition, CD7 expression was enhanced by histone deacetylase inhibitors such as trichostatin A and sodium butyrate, which indicates that Twist2 might be one of candidate factors involved in histone deacetylation. Based on these results, we conclude that upregulation of Twist2 increases the resistance to galectin-1-mediated-apoptosis, which may have significant implications for the progression of some T-cells into tumors such as Sezary cells.

Pharmacokinetic disposition of apicidin possessing histone deacetylase inhibiting activities

  • Shin, Beom-Soo;Jun, Yoon-Sik;Kim, Chul-Hwan;Yoo, Sun-Dong
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.244.2-244.2
    • /
    • 2003
  • The objective of this study was to characterize the absorption and pharmacokinetic disposition of novel cyclic tetrapeptide, apicidin, in rats. Apicidin was administered to SD rats by i.v. bolus injection (1,2 or 4 mg/kg) and oral gavages (10 mg/kg). Serum levels of apicidin were monitored by LC/MS over 8 hours following each administration. Upon i.v. injection, serum levels of apicidin were best fit by a multi-exponential equation. The t$\frac{1}{2}$. Cl$\sub$s/ and V$\sub$ss/ ranged from 0.9-1.1 hr, 52.8-56.5 ml/min/kg, and 2.6-2.7 L/kg, respectively. (omitted)

  • PDF

Purification, crystallization and X-ray crystallographic analysis of nicotinamidase Pnc1 from Kluyveromyces lactis

  • Kim, Shinae;Chang, Jeong Ho
    • Biodesign
    • /
    • v.7 no.1
    • /
    • pp.24-27
    • /
    • 2019
  • Pnc1 converts nicotinamide to nicotinic acid to generate NAD+ through the Preiss-Handler pathway that is one of the NAD+-salvage pathway. By reducing levels of nicotinamide, an inhibitor of the NAD+-dependent histone deacetylase Sir2, yeast Pnc1 contributes gene silencing. In this study, to understand the structural features and molecular mechanism of nicotinamidase Pnc1, we overexpressed, purified, and crystallized the N-terminally His6-tagged Pnc1 protein from Kluyveromyces lactis and obtained X-ray diffraction data at a resolution of 2.2 Å. The crystals of the K. lactis Pnc1 (KlPnc1) belonged to space group P212121 with unit cell parameters a=38.5, b=77.3, c=83.3, and α=β=γ= 90°. There is one molecule in the asymmetric unit.

Therapeutic Potential of CKD-504, a Novel Selective Histone Deacetylase 6 Inhibitor, in a Zebrafish Model of Neuromuscular Junction Disorders

  • Jeong, Hui Su;Kim, Hye Jin;Kim, Deok-Ho;Chung, Ki Wha;Choi, Byung-Ok;Lee, Ji Eun
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.231-242
    • /
    • 2022
  • The neuromuscular junction (NMJ), which is a synapse for signal transmission from motor neurons to muscle cells, has emerged as an important region because of its association with several peripheral neuropathies. In particular, mutations in GARS that affect the formation of NMJ result in Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. These disorders are mainly considered to be caused by neuronal axon abnormalities; however, no treatment is currently available. Therefore, in order to determine whether the NMJ could be targeted to treat neurodegenerative disorders, we investigated the NMJ recovery effect of HDAC6 inhibitors, which have been used in the treatment of several peripheral neuropathies. In the present study, we demonstrated that HDAC6 inhibition was sufficient to enhance movement by restoring NMJ impairments observed in a zebrafish disease model. We found that CKD-504, a novel HDAC6 inhibitor, was effective in repairing NMJ defects, suggesting that treatment of neurodegenerative diseases via NMJ targeting is possible.