• Title/Summary/Keyword: Histone acetylation

Search Result 96, Processing Time 0.018 seconds

Inhibition of Histone Deacetylase Activity Diminishes Pressure Overloaded Cardiac Hypertrophy in Mice

  • Hong, Yun-Kyung;Song, Jong-Wook;Lee, Sang-Kil;Lee, Young-Jeon;Rho, Gyu-Jin;Kim, Joo-Heon;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.159-165
    • /
    • 2011
  • To explore the role of histone deactylase (HDAC) activation in an in vivo model of hypertrophy, we studied the effects of Trichostatin A (TSA). TSA subjected to thoracic aortic banding (TAB)-induced pressure stress in mice. In histological observations, TAB in treated mice showed a significant hypertrophic response, whereas the sham operation remained nearly normal structure with partially blunted hypertrophy. TSA treatment had no effect (measured as HW/BW) on sham-operated animals. TAB animals treated with vehicle manifested a robust ~50% hypertrophic response (p<0.05 vs sham). TAB mice treated with 2 mg/kg/day TSA manifested a blunted growth responses, which was significantly diminished (p<0.05) compared with vehicle-treated TAB mice. TAB mice treated with a lower dose of TSA (0.5 mg/kg/day) manifested a similar blunting of hypertrophic growth (~25% increase in heart mass). Furthermore, to determine activity duration of TSA in vitro, 1 nM TSA was added to H9c2 cells. Histone acetylation was initiated at 4 hr after treatment, and it was peak up to 18 hr, then followed by significantly reduced to 30 hr. We also analyzed the expression of p53 following TSA treatment, wherein p53 expression was elevated at 4 hr, and it was maintained to 24 hr after treatment. ERK was activated at 8 hr, and maintained till 30 hr after treatment suggesting an intracellular signaling interaction between TSA and p53 expression Taken together, it is suggested that HDAC activation is required for pressure-overload growth of the heart. Eventually, these data suggest that histone acetylation may be a novel target for therapeutic intervention in pressure-overloaded cardiac hypertrophy.

Oxidative Stress, Chromatin Remodeling and Gene Transcription in Inflammation and Chronic Lung Diseases

  • Rahman, Irfan
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.95-109
    • /
    • 2003
  • Inflammatory lung diseases are characterized by chronic inflammation and oxidant/antioxidant imbalance. The sources of the increased oxidative stress in patients with chronic inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease (COPD) derive from the increased burden of inhaled oxidants, and from the increased amounts of reactive oxygen species (ROS) generated by several inflammatory, immune and various structural cells of the airways. Increased levels of ROS produced in the airways is reflected by increased markers of oxidative stress in the airspaces, sputum, breath, lungs and blood in patients with lung diseases. ROS, either directly or via the formation of lipid peroxidation products such as 4-hydroxy-2-nonenal may play a role in enhancing the inflammation through the activation of stress kinases (JNK, MAPK, p38) and redox sensitive transcription factors such as NF-${\kappa}B$ and AP-1. Recent evidences have indicated that oxidative stress and pro-inflammatory mediators can alter nuclear histone acetylation/deacetylation allowing access for transcription factor DNA binding leading to enhanced pro-inflammatory gene expression in various lung cells. Understanding of the mechanisms of redox signaling, NF-${\kappa}B$/AP-1 regulation, the balance between histone acetylation and deacetylation and the release and expression of pro- and anti-inflammatory mediators may lead to the development of novel therapies based on the pharmacological manipulation of antioxidants in lung inflammation and injury. Antioxidants that have effective wide spectrum activity and good bioavailability, thiols or molecules which have dual antioxidant and anti-inflammatory activity, may be potential therapeutic agents which not only protect against the direct injurious effects of oxidants, but may fundamentally alter the underlying inflammatory processes which play an important role in the pathogenesis of chronic inflammatory lung diseases.

Epigenetic Control of Oxidative Stresses by Histone Acetyltransferases in Candida albicans

  • Kim, Jueun;Park, Shinae;Lee, Jung-Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.181-189
    • /
    • 2018
  • Candida albicans is a major pathogenic fungus in humans, and meets at first the innate immune cells, such as macrophages, in its host. One important strategy of the host cell to kill C. albicans is to produce reactive oxygen species (ROS) by the macrophages. In response to ROS produced by the macrophages, C. albicans operates its defense mechanisms against them by expressing its oxidative stress response genes. Although there have been many research studies explaining the specific transcription factors and the expression of the oxidative stress genes in C. albicans, the regulation of the oxidative stress genes by chromatin structure is little known. Epigenetic regulation by the chromatin structure is very important for the regulation of eukaryotic gene expression, including the chromatin structure dynamics by histone modifications. Among various histone modifications, histone acetylation is reported for its direct relationship to the regulation of gene expression. Recent studies reported that histone acetyltransferases regulate genes to respond to the oxidative stress in C. albicans. In this review, we introduce all histone acetyltransferases that C. albicans contains and some papers that explain how histone acetyltransferases participate in the oxidative stress response in C. albicans.

Epigenetic regulation of fungal development and pathogenesis in the rice blast fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.19-19
    • /
    • 2018
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed first to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Based on the database entries, we carried out functional analysis of genes encoding histone modifying enzymes. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes is followed by ChIP-seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

Histone Modifications During DNA Replication

  • Falbo, Karina B.;Shen, Xuetong
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.149-154
    • /
    • 2009
  • Faithful and accurate replication of the DNA molecule is essential for eukaryote organisms. Nonetheless, in the last few years it has become evident that inheritance of the chromatin states associated with different regions of the genome is as important as the faithful inheritance of the DNA sequence itself. Such chromatin states are determined by a multitude of factors that act to modify not only the DNA molecule, but also the histone proteins associated with it. For instance, histones can be posttranslationally modified, and it is well established that these posttranslational marks are involved in several essential nuclear processes such as transcription and DNA repair. However, recent evidence indicates that posttranslational modifications of histones might be relevant during DNA replication. Hence, the aim of this review is to describe the most recent publications related to the role of histone posttranslational modifications during DNA replication.

Epigenetic characterization of the PBEF and TIMP-2 genes in the developing placentae of normal mice

  • Kim, Hong-Rye;Han, Rong-Xun;Diao, Yun-Fei;Park, Chang-Sik;Jin, Dong-Il
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.535-540
    • /
    • 2011
  • Reprogramming errors, which appear frequently in cloned animals, are reflected by aberrant gene expression. We previously reported the aberrant expression of TIMP-2 and PBEF in cloned placenta and differential expression of PBEF genes during pregnancy. To examine the epigenetic modifications that regulate dynamic gene expression in developing placentae, we herein analyzed the mRNA and protein expression levels of PBEF and TIMP-2 in the placentae of normal mice during pregnancy and then examined potential correlations with epigenetic modifications. DNA methylation pattern analysis revealed no difference, but ChIP assays using antibodies against H3-K9/K14 and H4-K5 histone acetylation revealed that the H3-K9/K14 acetylation levels, but not the H4-K5 acetylation levels, of the TIMP-2 and PBEF loci were significantly correlated with their gene expression levels during placentation in normal mice. These results suggest that epigenetic changes may regulate gene expression level in the developing placentae of normal mice and that inappropriate epigenetic reprogramming might be one cause of the abnormal placentae seen in cloned animals.

Fission Yeast-based Screening to Identify Putative HDAC Inhibitors Using a Telomeric Reporter Strain

  • Chung, Kyung-Sook;Ahn, Jiwon;Choi, Chung-Hae;Yim, Nam Hui;Kang, Chang-Mo;Kim, Chun-Ho;Lee, Kyeong;Park, Hee-Moon;Song, Kyung-Bin;Won, Misun
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.93-99
    • /
    • 2008
  • Transcriptional silencing is regulated by promoter methylation and histone modifications such as methylation and acetylation. We constructed a Schizosaccaromyces pombe reporter strain, KCT120a, to identify modifiers of transcriptional silencing, by inserting the $ura4^+$ gene into a heterochromatic telomere region. Two compounds inhibited the activity of histone deacetylases, induced acetylation of histone H3 and caused apoptotic cell death in HeLa cells. Expression of gelsolin and $p21^{waf1/cip1}$ also increased, as it does in response to HDAC inhibitors such as TSA. Therefore, these compounds appear to be potent inhibitors of HDACs, and hence potential anti-cancer drugs. Our observations suggest that a yeast cell-based assay system for transcriptional silencing may be useful for identifying histone deacetylase inhibitors and other agents affecting chromatin remodeling.

Histone Deacetylase in Carcinogenesis and Its Inhibitors as Anti-cancer Agents

  • Kim, Dong-Hoon;Kim, Min-Jung;Kwon, Ho-Jeong
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.110-119
    • /
    • 2003
  • The acetylation state of histone is reversibly regulated by histone acetyltransferase (HAT) and deacetylase (HDAC). An imbalance of this reaction leads to an aberrant behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, these key enzymes in the gene expression were cloned. They revealed a broad use of this modification, not only in histone, but also other proteins that involved transcription, nuclear transport, and cytoskeleton. These results suggest that HAT/HDAC takes charge of multiple-functions in the cell, not just the gene expression. HDAC is especially known to play an important role in carcinogenesis. The enzyme has been considered a target molecule for cancer therapy. The inhibition of HDAC activity by a specific inhibitor induces growth arrest, differentiation, and apoptosis of transformed or several cancer cells. Some of these inhibitors are in a clinical trial at phase I or phase II. The discovery and development of specific HDAC inhibitors are helpful for cancer therapy, and decipher the molecular mode of action for HDAC.

New Hdac Inhibitor, In2001 Induces Apoptosis/Cell Cycle Arrest in the Human Breast Cancer Cells

  • Min, Kyung-Nan;Joung, Ki-Eun;Cho, Min-jung;Kim, Dae-Ki;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.168-168
    • /
    • 2003
  • The acetylation of histone is one of the mechanisms involved in the regulation of gene expression and is tightly controlled by two core enzymes, histone acetyltransferase (HAT) and deacetylase (HDAC). There are several reports that imbalance of HAT and HDAC activity is associated with abnormal behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis.(omitted)

  • PDF

Non-histone protein HMGB1 inhibits the repair of damaged DNA by cisplatin in NIH-3T3 murine fibroblasts

  • Yusein-Myashkova, Shazie;Ugrinova, Iva;Pasheva, Evdokia
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.99-104
    • /
    • 2016
  • The nuclear non-histone protein high mobility group box (HMGB) 1 is known to having an inhibitory effect on the repair of DNA damaged by the antitumor drug cisplatin in vitro. To investigate the role of HMGB1 in living cells, we studied the DNA repair of cisplatin damages in mouse fibroblast cell line, NIH-3T3. We evaluated the effect of the post-synthetic acetylation and C-terminal domain of the protein by overexpression of the parental and mutant GFP fused forms of HMGB1. The results revealed that HMGB1 had also an inhibitory effect on the repair of cisplatin damaged DNA in vivo. The silencing of HMGB1 in NIH-3T3 cells increased the cellular DNA repair potential. The increased levels of repair synthesis could be "rescued" and returned to less than normal levels if the knockdown cells were transfected with plasmids encoding HMGB1 and HMGB1 K2A. In this case, the truncated form of HMGB1 also exhibited a slight inhibitory effect.