• Title/Summary/Keyword: Histone H3

Search Result 186, Processing Time 0.033 seconds

Histone H1 Kinase Activity during Meiotic Maturation of Porcine Oocytes Matured in pFF-PMSG (pFF-PMSG배지에서 돼지미성숙란의 체외배양시 Histone H1 Kinase 활성)

  • 장규태;박미령;윤창현
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.3
    • /
    • pp.253-264
    • /
    • 1998
  • Porcine follicular oocyte, collected from antral follicles (2~5 mm in diameter) of gilt ovaries were matured in vitro porcine follicular fluid (pFF) with PMSG (pFF-PMSG) buffer with at 37$^{\circ}C$ under 5% CO2 in air their ability of maturation promoting factor (MPF), of GV and GVBD formation was examined followed during time after in vitro culture. Formation of second metaphase was observed in 57.6% and 71.2% of matured in with pFF-PMSG buffer to 45 and 50 hours after invitro. Porcine oocytes cultured in pFF-PMSG for various periods of up to 30 hours were stained with Hoechst-33342 and classified according to maturation before assaying. Histone H1 kinase (H1K) activity was assayed during meiotic maturation in porcine oocytes matured in pFF-PMSG buffer in vitro. In oocytes matured in pFF-PMSG, H1K activity was at the 30 hours after culture and increased about 15 fold than at the germinal vesicle stage with before at the cultured in vitro. This pattern is similar to those reported in non-mammalian species and su, pp.rts the concepts that H1K is ubiquitous in eukaryotes and controls the meiotic cell cycle in mammals. These results suggest that the maturation pFF-PMSG buffer used influences the fluctuation pattern of H1K activity and biological characteristics of porcine oocytes cultured in vitro.

  • PDF

Histone Methylation Regulates Retinoic Acid-induced Hoxc Gene Expression in F9 EC Cells (F9 EC 세포에서 레티노산에 의해 유도되는 Hoxc 유전자의 발현에 히스톤 메틸화가 미치는 영향)

  • Min, Hyehyun;Kim, Myoung Hee
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.703-708
    • /
    • 2015
  • Hox genes encode a highly conserved family of homeodomain-containing transcription factors controlling vertebrate pattern formation along the anteroposterior body axis during embryogenesis. Retinoic acid (RA) is a key morphogen in embryogenesis and a critical regulator of both adult and embryonic cellular activity. Specifically, RA regulates Hox gene expression in mouse- or human-derived embryonic carcinoma (EC) cells. Histone modification has been reported to play a pivotal role in the process of RA-induced gene expression and cell differentiation. As histone modification is thought to play an essential role in RA-induced Hox gene expression, we examined RA-induced initiation of collinear expression of Hox genes and the corresponding histone modifications in F9 murine embryonic teratocarcinoma (EC) cells. Hox expression patterns and histone modifications were analyzed by semiquantitative RT-PCR, RNA-sequencing, and chromatin immuno-precipitation (ChIP)-PCR analyses. The Hoxc4 gene (D0) was initiated earlier than the Hoxc5 to –c10 genes (D3) upon RA treatment (day 0 [D0], day 1 [D1], and day 3 [D3]). The Hox nonexpressing D0 sample had a strong repressive marker, H3K27me3, than the D1 and D3 samples. In the D1 and D3 samples, reduced enrichment of the H3K27me3 marker was observed in the whole cluster. The active H3K4me3 marker was closely associated with the collinear expression of Hoxc genes. Thus, the Hoxc4 gene (D1) and all Hoxc genes (D3) expressed H3K4me3 upon transcription activation. In conclusion, these data indicated that removing H3K27me3 and acquiring H3K4me3 regulated RA-induced Hoxc gene collinearity in F9 cells.

Nuclear localization signal domain of HDAC3 is necessary and sufficient for the expression regulation of MDR1

  • Park, Hyunmi;Kim, Youngmi;Park, Deokbum;Jeoung, Dooil
    • BMB Reports
    • /
    • v.47 no.6
    • /
    • pp.342-347
    • /
    • 2014
  • Histone acetylation/deacetylation has been known to be associated with the transcriptional regulation of various genes. The role of histone deacetylase-3 in the expression regulation of MDR1 was investigated. The expression level of HDAC3 showed an inverse relationship with the expression level of MDR1. Wild-type HDAC3, but not catalytic mutant $HDAC3^{S424A}$, negatively regulated the expression of MDR1. Wild-type HDAC3, but not catalytic mutant $HDAC3^{S424A}$, showed binding to the promoter sequences of HDAC3. HDAC3 regulated the expression level, and the binding of Ac-$H3^{K9/14}$ and Ac-$H4^{K16}$ around the MDR1 promoter sequences. The nuclear localization signal domain of HDAC3 was necessary, and sufficient for the binding of HDAC3 to the MDR1 promoter sequences and for conferring sensitivity to microtubule-targeting drugs.

The Heterochromatin-1 Phosphorylation Contributes to TPA-Induced AP-1 Expression

  • Choi, Won Jun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.308-313
    • /
    • 2014
  • Activator protein-1 (AP-1) is an inducible transcription factor that contributes to the generation of chronic inflammation in response to oxidative and electrophilic stress. Previous studies have demonstrated that the PI3K/Akt1 pathway plays an important role in the transcriptional regulation of AP-1 expression. Although the histone post-translational modifications (PTMs) are assumed to affect the AP-1 transcriptional regulation by the PI3K/Akt pathway, the detailed mechanisms are completely unknown. In the present study, we show that heterochromatin 1 gamma ($HP1{\gamma}$) plays a negative role in TPA-induced c-Jun and c-Fos expression. We show that TPA-induced Akt1 directly phosphorylates $HP1{\gamma}$, abrogates its suppressive function and increases the interaction between histone H3 and 14-3-$3{\varepsilon}$. Collectively, these our data illustrate that the activation of PI3K/Akt pathway may play a permissive role in the recruitment of histone readers or other coactivators on the chromatin, thereby affecting the degree of AP-1 transcription.

In Vitro Developmental Competence of Porcine SCNT Embryos is improved by m-Carboxycinnamic Acid Bishydroxamide, Histone Deacetylase Inhibitor

  • Park, Sang-Hoon;Lee, Mi-Ran;Kim, Tae-Suk;Baek, Sang-Ki;Jin, Sang-Jin;Kim, Jin-Wook;Jeon, Sang-Gon;Yoon, Ho-Baek;Lee, Joon-Hee
    • Reproductive and Developmental Biology
    • /
    • v.38 no.4
    • /
    • pp.147-158
    • /
    • 2014
  • Differentiated nuclei can experimentally be returned to an undifferentiated embryonic status after nuclear transfer (NT) to unfertilized metaphase II (MII) oocytes. Nuclear reprogramming is triggered immediately after somatic cell nucleus transfer (SCNT) into recipient cytoplasm and this period is regarded as a key stage for optimizing reprogramming. In a recent study (Dai et al., 2010), use of m-carboxycinnamic acid bishydroxamide (CBHA) as a histone deacetylase inhibitor during the in vitro early culture of murine cloned embryos modifies the acetylation status of somatic nuclei and increases the developmental competence of SCNT embryos. Thus, we examined the effects of CBHA treatment on the in vitro preimplantation development of porcine SCNT embryos and on the acetylated status of histone H3K9 on cloned embryos at the zygote stage. We performed the three groups SCNT: SCNT (NT), CBHA treatment at the porcine fetus fibroblast cells (PFFs) used as donor cells prior to SCNT (CBHA-C) and CBHA treatment at the porcine SCNT embryos during the in vitro early culture after oocyte activation (CBHA-Z). The PFFs were treated with a $15{\mu}M$ of CBHA (8 h) for the early culture and the porcine cloned embryos were treated with a $100{\mu}M$ concentration of CBHA during the in vitro early culture (10 h). Cleavage rates and development to the blastocyst stage were assessed. No significant difference was observed the cleavage rate among the groups (82.6%, 76.4% and 82.2%, respectively). However, the development competence to the blastocyst stage was significantly increased in CBHA-Z embryos (22.7%) as compared to SCNT and CBHA-C embryos (8.6% and 4.1%)(p<0.05). Total cell numbers and viable cell numbers at the blastocyst stage of porcine SCNT embryos were increased in CBHA-Z embryos as compared to those in CBHA-C embryos (p<0.05). Signal level of histone acetylation (H3K9ac) at the zygote stage of SCNT was increased in CBHA-Z embryos as compared to SCNT and CBHA-C embryos. The results of the present study suggested that treatment with CBHA during the in vitro early culture (10 h) had significantly increased the developmental competence and histone acetylation level at the zygote stage.

The PcG protein hPc2 interacts with the N-terminus of histone demethylase JARID1B and acts as a transcriptional co-repressor

  • Zhou, Wu;Chen, Haixiang;Zhang, Lihuang
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.154-159
    • /
    • 2009
  • JARID1B (jumonji AT rich interactive domain 1B) is a large nuclear protein that is highly expressed in breast cancers and is proposed to function as a repressor of gene expression. In this paper, a phage display screen using the N-terminus of JARID1B as bait identified one of the JARID1B interacting proteins, namely PcG protein (Polycomb group) hPc2. We demonstrated that the C-terminal region, including the COOH box, was required for the interaction with the N-terminus of JARID1B. In a reporter assay system, co-expression of JARID1B with hPc2 significantly enhanced the transcriptional repression. These results support a role for hPc2 acting as a transcriptional co-repressor.

Inactivation of the genes involved in histone H3-lysine 4 methylation abates the biosynthesis of pigment azaphilone in Monascus purpureus

  • Balakrishnan, Bijinu;Lim, Yoon Ji;Suh, Jae-Won;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.157-165
    • /
    • 2019
  • Di- and tri-methylation of lysine 4 on histone H3 (H3K4me2 and H3K4me3, respectively) are epigenetic markers of active genes. Complex associated with Set1 (COMPASS) mediates these H3K4 methylations. The involvement of COMPASS activity in secondary metabolite (SM) biosynthesis was first demonstrated with an Aspergillus nidulans cclA knockout mutant. The cclA knockout induced the transcription of two cryptic SM biosynthetic gene clusters, leading to the production of the cognate SM. Monascus spp. are filamentous fungi that have been used for food fermentation in eastern Asia, and the pigment Monascus azaphione (MAz) is their main SM. Monascus highly produces MAz, implying that the cognate biosynthetic genes are highly active in transcription. In the present study, we examined how COMPASS activity modulates MAz biosynthesis by inactivating Monascus purpureus cclA (Mp-cclA) and swd1 (Mp-swd1). For both ${\Delta}Mp-cclA$ and ${\Delta}Mp-swd1$, a reduction in MAz production, accompanied by an abated cell growth, was observed. Suppression of MAz production was more effective in an agar culture than in the submerged liquid culture. The fidelity of the ${\Delta}Mp-swd1$ phenotypes was verified by restoring the WT-like phenotypes in a reversion recombinant mutant, namely, trpCp: Mp-swd1, that was generated from the ${\Delta}Mp-swd1$ mutant. Real-time quantitative Polymerase chain reaction analysis indicated that the transcription of MAz biosynthetic genes was repressed in the ${\Delta}Mp-swd1$ mutant. This study demonstrated that MAz biosynthesis is under the control of COMPASS activity and that the extent of this regulation is dependent on growth conditions.

Downregulation of JMJD2a and LSD1 is involved in CK2 inhibition-mediated cellular senescence through the p53-SUV39h1 pathway

  • Park, Jeong-Woo;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.92-97
    • /
    • 2022
  • Lysine methylation is one of the most important histone modifications that modulate chromatin structure. In the present study, the roles of the histone lysine demethylases JMJD2a and LSD1 in CK2 downregulation-mediated senescence were investigated. The ectopic expression of JMJD2a and LSD1 suppressed the induction of senescence-associated β-galactosidase activity and heterochromatin foci formation as well as the reduction of colony-forming and cell migration ability mediated by CK2 knockdown. CK2 downregulation inhibited JMJD2a and LSD1 expression by activating the mammalian target of rapamycin (mTOR)-ribosomal p70 S6 kinase (p70S6K) pathway. In addition, the down-regulation of JMJD2a and LSD1 was involved in activating the p53-p21Cip1/WAF1-SUV39h1-trimethylation of the histone H3 Lys9 (H3K9me3) pathway in CK2-downregulated cells. Further, CK2 downregulation-mediated JMJD2a and LSD1 reduction was found to stimulate the dimethylation of Lys370 on p53 (p53K370me2) and nuclear import of SUV39h1. Therefore, this study indicated that CK2 downregulation reduces JMJD2a and LSD1 expression by activating mTOR, resulting in H3K9me3 induction by increasing the p53K370me2-dependent nuclear import of SUV39h1. These results suggest that CK2 is a potential therapeutic target for age-related diseases.

Oxidative stress-induced aberrant G9a activation disturbs RE-1-containing neuron-specific genes expression, leading to degeneration in human SH-SY5Y neuroblastoma cells

  • Kim, Ho-Tae;Ohn, Takbum;Jeong, Sin-Gu;Song, Anji;Jang, Chul Ho;Cho, Gwang-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • Oxidative stress-induced neurodegeneration is one of several etiologies underlying neurodegenerative disease. In the present study, we investigated the functional role of histone methyltransferase G9a in oxidative stress-induced degeneration in human SH-SY5Y neuroblastoma cells. Cell viability significantly decreased on H2O2 treatment; however, treatment with the G9a inhibitor BIX01294 partially attenuated this effect. The expression of neuron-specific genes also decreased in H2O2-treated cells; however, it recovered on G9a inhibition. H2O2-treated cells showed high levels of H3K9me2 (histone H3 demethylated at the lysine 9 residue), which is produced by G9a activation; BIX01294 treatment reduced aberrant activation of G9a. H3K9me2 occupancy of the RE-1 site in neuron-specific genes was significantly increased in H2O2-treated cells, whereas it was decreased in BIX01294-treated cells. The differentiation of H2O2-treated cells also recovered on G9a inhibition by BIX01294. Consistent results were observed when used another G9a inhibitor UCN0321. These results demonstrate that oxidative stress induces aberrant activation of G9a, which disturbs the expression of neuron-specific genes and progressively mediates neuronal cell death. Moreover, a G9a inhibitor can lessen aberrant G9a activity and prevent neuronal damage. G9a inhibition may therefore contribute to the prevention of oxidative stress-induced neurodegeneration.

Effects of Paf1 complex components on H3K4 methylation in budding yeast (출아효모에서 Paf1 복합체의 구성원들이 H3의 네번째 라이신의 메틸화에 미치는 영향)

  • Oh, Jun-Soo;Lee, Jung-Shin
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.487-494
    • /
    • 2016
  • In Saccharomyces cerevisiae, Paf1 complex consists of five proteins, and they are structurally and functionally well conserved in yeast, fruit fly, plants, and human. With binding to RNA polymerase II from transcription start site to termination site, Paf1 complex functions as a platform for recruiting many types of transcription factors to RNA polymerase II. Paf1 complex contributes to H2B ubiquitination and indirectly influences on H3K4 di- and tri-methylation by histone crosstalk. But the individual effects of five components in Paf1 complex on these two histone modifications including H2B ubiquitination and H3K4 methylation largely remained to be identified. In this study, we constructed the single-gene knockout mutants of each Paf1 complex component and observed H3K4 mono-, di-, and trimethylation as well as H2B ubiquitination in these mutants. Interestingly, in each ${\Delta}paf1$, ${\Delta}rtf1$, and ${\Delta}ctr9$ strain, we observed the dramatic defect in H3K4 monomethylation, which is independent of H2B ubiquitination, as well as H3K4 di- and trimethylation. However, the protein level of Set1, which is methyltransferase for H3K4, was not changed in these mutants. This suggests that Paf1 complex may directly influence on H3K4 methylation by directly regulating the activity of Set1 or the stability of Set1 complex in an H2B ubiquitination independent manner.