• 제목/요약/키워드: Histone

검색결과 542건 처리시간 0.028초

Investigating the role of Sirtuins in cell reprogramming

  • Shin, Jaein;Kim, Junyeop;Park, Hanseul;Kim, Jongpil
    • BMB Reports
    • /
    • 제51권10호
    • /
    • pp.500-507
    • /
    • 2018
  • Cell reprogramming has been considered a powerful technique in the regenerative medicine field. In addition to diverse its strengths, cell reprogramming technology also has several drawbacks generated during the process of reprogramming. Telomere shortening caused by the cell reprogramming process impedes the efficiency of cell reprogramming. Transcription factors used for reprogramming alter genomic contents and result in genetic mutations. Additionally, defective mitochondria functioning such as excessive mitochondrial fission leads to the limitation of pluripotency and ultimately reduces the efficiency of reprogramming. These problems including genomic instability and impaired mitochondrial dynamics should be resolved to apply cell reprograming in clinical research and to address efficiency and safety concerns. Sirtuin (NAD+-dependent histone deacetylase) has been known to control the chromatin state of the telomere and influence mitochondria function in cells. Recently, several studies reported that Sirtuins could control for genomic instability in cell reprogramming. Here, we review recent findings regarding the role of Sirtuins in cell reprogramming. And we propose that the manipulation of Sirtuins may improve defects that result from the steps of cell reprogramming.

An efficient SCNT technology for the establishment of personalized and public human pluripotent stem cell banks

  • Lee, Jeoung Eun;Chung, Young Gie;Eum, Jin Hee;Lee, Yumie;Lee, Dong Ryul
    • BMB Reports
    • /
    • 제49권4호
    • /
    • pp.197-198
    • /
    • 2016
  • Although three different research groups have reported successful derivations of human somatic cell nuclear transfer-derived embryonic stem cell (SCNT-ESC) lines using fetal, neonatal and adult fibroblasts, the extremely poor development of cloned embryos has hindered its potential applications in regenerative medicine. Recently, however, our group discovered that the severe methylation of lysine 9 in Histone H3 in a human somatic cell genome was a major SCNT reprogramming barrier, and the overexpression of KDM4A, a H3K9me3 demethylase, significantly improved the blastocyst formation of SCNT embryos. In particular, by applying this new approach, we were able to produce multiple SCNT-ES cell lines using oocytes obtained from donors whose eggs previously failed to develop to the blastocyst stage. Moreover, the success rate was closer to 25%, which is comparable to that of IVF embryos, so that our new human SCNT method seems to be a practical approach to establishing a pluripotent stem cell bank for the general public as well as for individual patients.

Lessons from Yeast on Emerging Roles of the ATAD2 Protein Family in Gene Regulation and Genome Organization

  • Cattaneo, Matteo;Morozumi, Yuichi;Perazza, Daniel;Boussouar, Faycal;Jamshidikia, Mahya;Rousseaux, Sophie;Verdel, Andre;Khochbin, Saadi
    • Molecules and Cells
    • /
    • 제37권12호
    • /
    • pp.851-856
    • /
    • 2014
  • ATAD2, a remarkably conserved, yet poorly characterized factor is found upregulated and associated with poor prognosis in a variety of independent cancers in human. Studies conducted on the yeast Saccharomyces cerevisiae ATAD2 homologue, Yta7, are now indicating that the members of this family may primarily be regulators of chromatin dynamics and that their action on gene expression could only be one facet of their general activity. In this review, we present an overview of the literature on Yta7 and discuss the possibility of translating these findings into other organisms to further define the involvement of ATAD2 and other members of its family in regulating chromatin structure and function both in normal and pathological situations.

Rice plants regenerated under saline conditions displayed salt tolerance and stress memory

  • Cho, Hyun Min;Chun, Hyun Jin;Kim, Min Chul
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.152-152
    • /
    • 2017
  • Plants exposed to environmental stress for long durations often can adapt to stress conditions with improved tolerance. Moreover this acquired tolerance to stress can be retained even after reverting to destressed growth conditions, which is known to stress memory. In these adaptation and stress memory processes, epigenetic regulation, such as DNA methylation and histone modifications play a key role. Here, we showed that regenerated rice plants from embryogenic callus exposed to gradually increasing NaCl concentrations (up to 120 mM NaCl) acquired salt tolerance and their enhanced tolerance are inherited to subsequent generations. The rice plants (R0) regenerated from rice callus under saline conditions were transplanted into normal paddy field and R1 seeds were harvested. These R1 seeds displayed higher germination rate on MS medium containing 100mM NaCl than wild-type. The callus derived from R1 seeds showed better growth than control callus on high salinity medium. And the salt-adapted R1 plants exhibited higher chlorophyll contents and also higher $K^+/Na^+$ ratio than wild-type rice under saline conditions. The results indicated that rice plants successfully adapted to saline growth conditions during regeneration on high salt medium and moreover this acquired tolerance to salt stress was inherited subsequent generation.

  • PDF

Epigenetic Regulation of miR-129-2 Leads to Overexpression of PDGFRa and FoxP1 in Glioma Cells

  • Tian, Xiang-Yang;Zhang, Ling;Sun, Lai-Guang;Li, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.6129-6133
    • /
    • 2015
  • miR-129-2 is frequently downregulated in multiple cancers. However, how it is silenced in cancers remains unclear. Here we investigated the expression profile and potential biological function of miR-129-2 in glioblastoma (GBM), the most common and lethal form of brain tumors in adults. We showed that miR-129-2 is lost in GBM patient specimens and cultured cell lines. miR-129-2 expression could be restored upon treatment with a histone deadetylase inhibitor (trichostatin A) but not a DNA methylation inhibitor (5-Aza-2'-deoxycytidine), and more profound effect was observed with the treatment of these two drugs in combination. Furthermore, forced expression of miR-129-2 repressed the expression of major oncogenic genes such as PDGFRa and Foxp1 in GBMs. Consistently, expression of miR-129-2 significantly inhibits GBM cell proliferation in vitro. These results reveal that miR-129-2 is epigenetically regulated and functions as a tumor suppressor gene in GBMs, suggesting it may serve as a potential therapeutic target for GBM treatment.

Molecular Links between Alcohol and Tobacco Induced DNA Damage, Gene Polymorphisms and Patho-physiological Consequences: A Systematic Review of Hepatic Carcinogenesis

  • Mansoori, Abdul Anvesh;Jain, Subodh Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.4803-4812
    • /
    • 2015
  • Chronic alcohol and tobacco abuse plays a crucial role in the development of different liver associated disorders. Intake promotes the generation of reactive oxygen species within hepatic cells exposing their DNA to continuous oxidative stress which finally leads to DNA damage. However in response to such damage an entangled protective repair machinery comprising different repair proteins like ATM, ATR, H2AX, MRN complex becomes activated. Under abnormal conditions the excessive reactive oxygen species generation results in genetic predisposition of various genes (as ADH, ALDH, CYP2E1, GSTT1, GSTP1 and GSTM1) involved in xenobiotic metabolic pathways, associated with susceptibility to different liver related diseases such as fibrosis, cirrhosis and hepatocellular carcinoma. There is increasing evidence that the inflammatory process is inherently associated with many different cancer types, including hepatocellular carcinomas. The generated reactive oxygen species can also activate or repress epigenetic elements such as chromatin remodeling, non-coding RNAs (micro-RNAs), DNA (de) methylation and histone modification that affect gene expression, hence leading to various disorders. The present review provides comprehensive knowledge of different molecular mechanisms involved in gene polymorphism and their possible association with alcohol and tobacco consumption. The article also showcases the necessity of identifying novel diagnostic biomarkers for early cancer risk assessment among alcohol and tobacco users.

A New Cell Counting Method to Evaluate Anti-tumor Compound Activity

  • Wang, Xue-Jian;Zhang, Xiu-Rong;Zhang, Lei;Li, Qing-Hua;Wang, Lin;Shi, Li-Hong;Fang, Chun-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3397-3401
    • /
    • 2014
  • Determining cell quantity is a common problem in cytology research and anti-tumor drug development. A simple and low-cost method was developed to determine monolayer and adherent-growth cell quantities. The cell nucleus is located in the cytoplasm, and is independent. Thus, the nucleus cannot make contact even if the cell density is heavy. This phenomenon is the foundation of accurate cell-nucleus recognition. The cell nucleus is easily recognizable in images after fluorescent staining because it is independent. A one-to-one relationship exists between the nucleus and the cell; therefore, this method can be used to determine the quantity of proliferating cells. Results indicated that the activity of the histone deacetylase inhibitor Z1 was effective after this method was used. The nude-mouse xenograft model also revealed the potent anti-tumor activity of Z1. This research presents a new anti-tumor-drug evaluation method.

3-Deazaneplanocin A is a Promising Therapeutic Agent for Ovarian Cancer Cells

  • Shen, Liang;Cui, Jing;Pang, Ying-Xin;Ma, Yan-Hui;Liu, Pei-Shu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2915-2918
    • /
    • 2013
  • Background: Recent studies have shown that 3-deazaneplanocin A (DZNep), a well-known histone methyltransferase inhibitor, disrupts polycomb-repressive complex 2 (PRC2), and induces apoptosis, while inhibiting proliferation and metastasis, in cancer cells, including acute myeloid leukemia, breast cancer and glioblastoma. However, little is known about effects of DZNep on ovarian cancer cells. Materials and Methods: We here therefore studied DZNep-treated A2780 ovarian cancer cells in vitro. Proliferation of ovarian cancer cells under treatment of DZNep was assessed by MTT and apoptosis by flow cytometry. Cell wound healing was applied to detect the migration. Finally, we used q-PCR to assess the migration-related gene, E-cadherin. Results: DZNep could inhibit the proliferation of A2780 and induce apoptosis Furthermore, it inhibited migration and increased the expression of E-cadherin (P<0.05). Conclusion: DZNep is a promising therapeutic agent for ovarian cancer cells, with potential to inhibite proliferation, induce apoptosis and decrease migration.

Transcriptional repression of ANGPT1 by histone H3K9 demethylase KDM3B

  • Han, Arim;Chae, Yun-Cheol;Park, Jin Woo;Kim, Kee-Beom;Kim, Ji-Young;Seo, Sang-Beom
    • BMB Reports
    • /
    • 제48권7호
    • /
    • pp.401-406
    • /
    • 2015
  • Here we report that the H3K9 demethylase KDM3B represses transcription of the angiogenesis regulatory gene, ANGPT1. Negative regulation of ANGPT1 by KDM3B is independent of its Jumonji (JmjC) domain-mediated H3K9 demethylase activity. We demonstrate that KDM3B downregulates ANGPT1 via interaction with SMRT, and suggest that the repressor complex is formed at the promoter area of ANGPT1. Using MTT and wound healing assays, depletion of KDM3B was found to increase cell proliferation and cell motility, indicating that KDM3B has a role in angiogenesis. [BMB Reports 2015; 48(7): 401-406]

Identification of Alternaria alternata as a Causal Agent for Leaf Blight in Syringa Species

  • Mmbaga, Margaret T.;Shi, Ainong;Kim, Mee-Sook
    • The Plant Pathology Journal
    • /
    • 제27권2호
    • /
    • pp.120-127
    • /
    • 2011
  • While many isolates of Alternaria alternata are common saprophytes on trees and shrubs, this study clearly demonstrated that A. alternata is a primary pathogen in lilac (Syringa sp.), causing a leaf-blight that affects different Syringa species. Isolates of Alternaria sp. were collected from leaf blight samples of lilacs in the field. The internal transcribed spacer (ITS) region and morphological characterization were used to identify lilac blight pathogen. Based on 100% ITS nucleotide sequence identities to the Alternaria genus in the GenBank and morphological features, these isolates were identified as A. alternata. Disease symptoms were reproduced in lilac plants inoculated with A. alternata mycelial plugs and sprayed with a fungus-free culture filtrate, indicating that pathogenesis in lilac involves secondary metabolites or toxins. Diagnostic primers were developed to detect Alternaria sp. and A. alternata in lilac leaf blight based on ITS region and four known genes associated with pathogenesis in A. alternata: mixed-linked glucanase precursor, endopolygalacturonase, hsp70, and histone genes. The results from our study indicated A. alternata is a primary pathogen in lilac leaf blight, and these diagnostic primers can be used as a tool for the fast detection of A. alternata associated with lilac leaf blight.