• Title/Summary/Keyword: Histogram Region Equalization

Search Result 41, Processing Time 0.022 seconds

Regional Dynamic Range Histogram Equalization for Image Enhancement (국부영역의 동적범위 변화를 이용한 영상 개선 알고리즘)

  • Lee Eui-Hyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.101-109
    • /
    • 2004
  • Image enhancement for Infrared imaging system is mainly based on the global histogram equalization. The global histogram equalization(GHE) is a method in which each pixel is equalized by using a whole histogram of an image. GHE is speedy and effective for real-time imaging system but its method fails to enhance the fine details. On the other hand, the basic local histogram equalization(LHE) method uses sliding a window and. the pixels under the window region are equalized over the whole output dynamic range. The LHE is adequate to enhance the fine details. But this method is computationally slow and noises are over-enhanced. So various local histogram equalization methods have been already presented to overcome these problems of LHE. In this paper, a new regional dynamic range histogram equalization (RDRHE) is presented. RDRHE improves the equalization quality while reducing the computational burden.

An Image Enhancement Algorithm based on Color Constancy and Histogram Equalization using Edge Region (색채 항상성 방법과 경계 영역 기반 히스토그램 평활화 방법을 이용한 영상의 화질 향상 방법)

  • Cho, Dong-Chan;Kang, Hyung-Sub;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.15 no.3
    • /
    • pp.332-345
    • /
    • 2010
  • A unified image enhancement method is proposed for high-resolution image which based on color constancy and histogram equalization using edge region. To speed up the method, smaller image is used when parameters of color constancy and histogram equalization are determined. In the color constancy process, nth-derivative of gaussian is applied to x and y axis separately in order to estimate the color of the illumination rapidly. In the histogram equalization process, the histogram obtained from near-edge region is used for the histogram equalization. In the experiments, high-resolution images taken by digital camcorder are used for verifying the performance of the proposed method.

Color Image Enhancement Using Local Area Histogram Equalization On Segmented Regions Via Watershed Transform

  • Lertpokanont, B.;Chitwong, S.;Cheevasuvit, F.;Dejhan, K.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.192-194
    • /
    • 2003
  • Since the details in quasi-homogeneous region will be destroyed from the conventional global image enhancement method such as histogram equalization. This defect is caused by the saturation of gray level in equalization process. So the local histogram equalization for each quasi-homogeneous region will be used in order to improve the details in the region itself. To obtain the quasi- homogeneous regions, the original image must be segmented. Here we applied the watershed transform to the interesting image. Since the watershed transform is based on mathematical morphology, therefore, the regions touch can be effectively separated. Hence two adjacent regions which have the similar gray pixels will be split off. The process will be independently applied to three different spectral images. Then three different colors are assigned to each processed image in order to produce a color composite image. By the proposed algorithm, the result image shows the better perception on image details. Therefore, the high efficiency of image classification can be obtained by using this color image.

  • PDF

An Adaptive Contrast Enhancement Method using Dynamic Range Segmentation for Brightness Preservation (밝기 보존을 위한 동적 영역 분할을 이용한 적응형 명암비 향상기법)

  • Park, Gyu-Hee;Cho, Hwa-Hyun;Lee, Seung-Jun;Yun, Jong-Ho;Chon, Myung-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • In this paper, we propose an adaptive contrast enhancement method using dynamic range segmentation. Histogram Equalization (HE) method is widely used for contrast enhancement. However, histogram equalization method is not suitable for commercial display because it may cause undesirable artifacts due to the significant change in brightness. The proposed algorithm segments the dynamic range of the histogram and redistributes the pixel intensities by the segment area ratio. The proposed method may cause over compressed effect when intensity distribution of an original image is concentrated in specific narrow region. In order to overcome this problem, we introduce an adaptive scale factor. The experimental results show that the proposed algorithm suppresses the significant change in brightness and provides wide histogram distribution compared with histogram equalization.

Image Histogram Equalization Based on Gaussian Mixture Model (가우시안 혼합 모델 기반의 영상 히스토그램 평활화)

  • Jun, Mi-Jin;Lee, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.748-760
    • /
    • 2012
  • In case brightness distribution is concentrated in a region, it is difficult to classify the image features. To solve this problem, we apply global histogram equalization and local histogram equalization to images. In case of global histogram equalization, it can be too bright or dark because it doesn't consider the density of brightness distribution. Thus, it is difficult to enhance the local contrast in the images. In case of local histogram equalization, it can produce unexpected blocks in the images. In order to enhance the contrast in the images, this paper proposes a local histogram equalization based on the Gaussian Mixture Models(GMMs) in regions of histogram. Mean and variance parameters in each regions is updated EM-algorithm repeatedly and then ranges of equalization on each regions. The experimental results performed with image of various contrasts show that the proposed algorithm is better than the global histogram equalization.

Contrast Enhancement Using a Density based Sub-histogram Equalization Technique (밀도기반의 분할된 히스토그램 평활화를 통한 대비 향상 기법)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.10-21
    • /
    • 2009
  • In order to enhance the contrast in the regions where the pixels have similar intensities, this paper presents a new histogram equalization scheme. Conventional global equalization schemes over-equalizes those regions so that too bright or dark pixels are resulted and local equalization schemes produce unexpected discontinuities at the boundaries of the blocks. The proposed algorithm segments the original histogram into sub-histograms with reference to brightness level and equalizes each sub-histogram with the limited extents of equalization considering its mean and variance. The final image is determined as the weighted sum of the equalized images obtained by using the sub-histogram equalizations. By limiting the maximum and minimum ranges of equalization operations on individual sub-histograms, the over-equalization effect is eliminated. Also the result image does not miss feature information in low density histogram region since the remaining these area is applied separating equalization. This paper includes how to determine the segmentation points in the histogram. The proposed algorithm has been tested with more than 100 images having various contrast in the images and the results are compared to the conventional approaches to show its superiority.

The Clip Limit Decision of Contrast Limited Adaptive Histogram Equalization for X-ray Images using Fuzzy Logic (퍼지를 이용한 X-ray 영상의 대비제한 적응 히스토그램 평활화 한계점 결정)

  • Cho, Hyunji;Kye, Heewon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.806-817
    • /
    • 2015
  • The contrast limited adaptive histogram equalization(CLAHE) is an advanced method for the histogram equalization which is a common contrast enhancement technique. The CLAHE divides the image into sections, and applies the contrast limited histogram equalization for each section. X-ray images can be classified into three areas: skin, bone, and air area. In clinical application, the interest area is limited to the skin or bone area depending on the diagnosis region. The CLAHE could deteriorate X-ray image quality because the CLAHE enhances the area which doesn't need to be enhanced. In this paper, we propose a new method which automatically determines the clip limit of CLAHE's parameter to improve X-ray image quality using fuzzy logic. We introduce fuzzy logic which is possible to determine clip limit proportional to the interest of users. Experimental results show that the proposed method improve images according to the user's preference by focusing on the subject.

Image Enhancement Using Adaptive Region-based Histogram Equalization for Multiple Color-Filter Aperture System (다중 컬러필터 조리개 시스템을 위한 적응적 히스토그램 평활화를 이용한 영상 개선)

  • Lee, Eun-Sung;Kang, Won-Seok;Kim, Sang-Jin;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.65-73
    • /
    • 2011
  • In this paper, we present a novel digital multifocusing approach using adaptive region-based histogram equalization for the multiple color-filter aperture (MCA) system with insufficient amount of incoming light. From the image acquired by the MCA system, we can estimate the depth information of objects at different distances by measuring the amount of misalignment among the RGB color planes. The estimated depth information is used to obtain multifocused images together with the process of the region-of-interests (ROIs) classification, registration, and fusion. However, the MCA system results in the low-exposure problem because of the limited size of the apertures. For overcoming this problem, we propose adaptive region-based histogram equalization. Based on the experimental results, the proposed algorithm is proved to be able to obtain in-focused images under the low light level environment.

Evaluation of U-Net Based Learning Models according to Equalization Algorithm in Thyroid Ultrasound Imaging (갑상선 초음파 영상의 평활화 알고리즘에 따른 U-Net 기반 학습 모델 평가)

  • Moo-Jin Jeong;Joo-Young Oh;Hoon-Hee Park;Joo-Young Lee
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • This study aims to evaluate the performance of the U-Net based learning model that may vary depending on the histogram equalization algorithm. The subject of the experiment were 17 radiology students of this college, and 1,727 data sets in which the region of interest was set in the thyroid after acquiring ultrasound image data were used. The training set consisted of 1,383 images, the validation set consisted of 172 and the test data set consisted of 172. The equalization algorithm was divided into Histogram Equalization(HE) and Contrast Limited Adaptive Histogram Equalization(CLAHE), and according to the clip limit, it was divided into CLAHE8-1, CLAHE8-2. CLAHE8-3. Deep Learning was learned through size control, histogram equalization, Z-score normalization, and data augmentation. As a result of the experiment, the Attention U-Net showed the highest performance from CLAHE8-2 to 0.8355, and the U-Net and BSU-Net showed the highest performance from CLAHE8-3 to 0.8303 and 0.8277. In the case of mIoU, the Attention U-Net was 0.7175 in CLAHE8-2, the U-Net was 0.7098 and the BSU-Net was 0.7060 in CLAHE8-3. This study attempted to confirm the effects of U-Net, Attention U-Net, and BSU-Net models when histogram equalization is performed on ultrasound images. The increase in Clip Limit can be expected to increase the ROI match with the prediction mask by clarifying the boundaries, which affects the improvement of the contrast of the thyroid area in deep learning model learning, and consequently affects the performance improvement.

Comparison of Based on Histogram Equalization Techniques by Using Normalization in Thoracic Computed Tomography (흉부 컴퓨터 단층 촬영에서 정규화를 사용한 다양한 히스토그램 평준화 기법을 비교)

  • Lee, Young-Jun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.473-480
    • /
    • 2021
  • This study was purpose to method that applies for improving the image quality in CT and X-ray scan, especially in the lung region. Also, we researched the parameters of the image before and after applying for Histogram Equalization (HE) such as mean, median values in the histogram. These techniques are mainly used for all type of medical images such as for Chest X-ray, Low-Dose Computed Tomography (CT). These are also used to intensify tiny anatomies like vessels, lung nodules, airways and pulmonary fissures. The proposed techniques consist of two main steps using the MATLAB software (R2021a). First, the technique should apply for the process of normalization for improving the basic image more correctly. In the next, the technique actively rearranges the intensity of the image contrast. Second, the Contrast Limited Adaptive Histogram Equalization (CLAHE) method was used for enhancing small details, textures and local contrast of the image. As a result, this paper shows the modern and improved techniques of HE and some advantages of the technique on the traditional HE. Therefore, this paper concludes that various techniques related to the HE can be helpful for many processes, especially image pre-processing for Machine Learning (ML), Deep Learning (DL).