• 제목/요약/키워드: Histogram Refinement

검색결과 10건 처리시간 0.026초

칼라 히스토그램 정제를 이용한 특징벡터 기반 영상 검색 알고리즘 (Image retrieval algorithm based on feature vector using color of histogram refinement)

  • 강지영;박종안;백정욱
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.376-379
    • /
    • 2008
  • 내용기반 영상검색(CBIR)에서 보다 효율적이고 빠른 영상검색을 위하여 본 논문에서는 칼라 히스토그램 정제를 이용한 특정벡터 기반 영상검색 알고리즘을 제안한다. RGB 칼라 이미지에서 각각의 R, G, B를 분할하고 히스토그램을 추출하여 16개의 영역(bin)으로 균일하게 분할한 다음 R, G, B 각각의 히스토그램에서 영역의 픽셀값을 계산하여 비교, 분석하고 그중 최고값을 추출한다. 그리고 R, G, B 각각의 영역의 최고값들을 이용하여 칼라 정보를 인덱스화 한 후 그 특정값을 이용한 영상 검색 기술을 수행한다. 본 논문에서 제안한 알고리즘은 효과적인 특정 추출을 위하여 각각의 R, G, B에서 추출 된 특정값을 특정벡터 테이블로 구성하여 입력 영상과 데이터베이스 영상을 비교하고 매칭도와 순위를 구하여 기존의 히스토그램만을 이용한 알고리즘 보다 더 나은 검색 결과를 확인하였다.

  • PDF

지역 색차 기반의 히스토그램 정교화에 의한 영상 검색 (Image Retrieval Using Histogram Refinement Based on Local Color Difference)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제18권12호
    • /
    • pp.1453-1461
    • /
    • 2015
  • Since digital images and videos are rapidly increasing in the internet with the spread of mobile computers and smartphones, research on image retrieval has gained tremendous momentum. Color, shape, and texture are major features used in image retrieval. Especially, color information has been widely used in image retrieval, because it is robust in translation, rotation, and a small change of camera view. This paper proposes a new method for histogram refinement based on local color difference. Firstly, the proposed method converts a RGB color image into a HSV color image. Secondly, it reduces the size of color space from 2563 to 32. It classifies pixels in the 32-color image into three groups according to the color difference between a central pixel and its neighbors in a 3x3 local region. Finally, it makes a color difference vector(CDV) representing three refined color histograms, then image retrieval is performed by the CDV matching. The experimental results using public image database show that the proposed method has higher retrieval accuracy than other conventional ones. They also show that the proposed method can be effectively applied to search low resolution images such as thumbnail images.

Contrast Enhancement using Histogram Equalization with a New Neighborhood Metrics

  • Sengee, Nyamlkhagva;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제11권6호
    • /
    • pp.737-745
    • /
    • 2008
  • In this paper, a novel neighborhood metric of histogram equalization (HE) algorithm for contrast enhancement is presented. We present a refinement of HE using neighborhood metrics with a general framework which orders pixels based on a sequence of sorting functions which uses both global and local information to remap the image greylevels. We tested a novel sorting key with the suggestion of using the original image greylevel as the primary key and a novel neighborhood distinction metric as the secondary key, and compared HE using proposed distinction metric and other HE methods such as global histogram equalization (GHE), HE using voting metric and HE using contrast difference metric. We found that our method can preserve advantages of other metrics, while reducing drawbacks of them and avoiding undesirable over-enhancement that can occur with local histogram equalization (LHE) and other methods.

  • PDF

Title Extraction from Book Cover Images Using Histogram of Oriented Gradients and Color Information

  • Do, Yen;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • 제8권4호
    • /
    • pp.95-102
    • /
    • 2012
  • In this paper, we present a technique to extract the title areas from book cover images. A typical book cover image may contain text, pictures, diagrams as well as complex and irregular background. In addition, the high variability of character features such as thickness, font, position, background and tilt of the text also makes the text extraction task more complicated. Therefore, we propose a two steps efficient method that uses Histogram of Oriented Gradients and color information to find the title areas. Firstly, text localization is carried out to find the title candidates. Finally, refinement process is performed to find the sufficient components of title areas. To obtain the best result, we also use other constraints about the size, ratio between the length and width of the title. We achieve encouraging results of extracted title regions from book cover images which prove the advantages and efficiency of the proposed method.

히스토그램 정보와 dark channel prior를 이용한 다해상도 기반 단일 영상 안개 제거 알고리즘 (A Single Image Defogging Algorithm Based on Multi-Resolution Method Using Histogram Information and Dark Channel Prior)

  • 양승용;양정은;홍석근;조석제
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.649-655
    • /
    • 2015
  • 본 논문에서는 효과적인 단일 영상 안개 제거 알고리즘을 제안한다. 잘 알려진 안개 제거 알고리즘인 dark channel prior(DCP)는 경계선 영역에서의 후광 현상(halo artifact) 및 결과 영상의 저대비를 초래하고 전달량 정제(refinement) 과정에서 긴 계산 시간을 필요로 한다. 이러한 문제들을 해결하기 위해 제안한 방법은 전달량을 추정할 때 DCP와 히스토그램 정보로 구성된 비용함수를 이용하고, 빠른 처리를 위해 다해상도 기법을 이용한다. 히스토그램 정보는 안개 제거 결과의 저대비 현상을 방지해주고, 에지 정보를 참고하는 다해상도 기법은 계산 시간을 감소시키고 후광 현상을 방지할 수 있다. 다수의 안개 영상에 대한 실험을 통해 제안한 방법이 기존의 방법들보다 효율적이고 우수함을 확인하였다.

코너 형태와 그레이스케일 히스토그램을 정제를 이용한 영상검색 (Image Retrieval using Gray Scale Histogram Refinement and Corner Shape)

  • 정일회;;박종안
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.380-383
    • /
    • 2008
  • 본 논문은 단순한 키워드 검색에서 발생하는 오차를 줄이기 위해 이미지의 코너정보와 그레이스케일 히스토그램 정제를 이용한 영상 검색 시스템을 구현하고자 한다. 먼저 원하는 이미지의 특정을 추출하는 단계와 추출된 특징을 분석하는 단계, 확보된 정보를 데이터베이스로부터 검색하는 단계, 그 결과 안에서의 그레이스케일 히스토그램 정제 방법으로 다시 재검색하는 단계, 마지막으로 정확한 정보 추출단계를 거치게 된다. 구현 알고리즘은 검색 단계에 있어서 크게 2단계로 나눠진다. 먼저 이미지를 에지로 변환 코너정보를 추출하는 단계, 코너 점의 픽셀을 3*3으로 나누어 RGB중의 픽셀의 합을 하는 단계, 그 코너 값을 데이터베이스와 비교하는 단계, 최대 500개까지의 추출된 이미지를 데이터베이스에 저장되는 단계로 이루어지며 다음 단계는 원 이미지를 그레이스케일로 변환 등질화하는 단계, 히스토그램 정보 획득하는 단계, 8*8 개의 빈으로 나누어 최대 색상정보 값을 추출하는 단계, 그리고 최대 색상정보 영역을 1단계 결과 값과 비교하여 정확한 검색을 얻는 단계로 구성되며 시뮬레이션 결과는 우수한 정확도를 보여 주고 있다.

  • PDF

흉부 CT 영상에서 폐 혈관 분할 및 정제 (Pulmonary Vessels Segmentation and Refinement On the Chest CT Images)

  • 김정철;조준호;황형수
    • 전자공학회논문지
    • /
    • 제50권11호
    • /
    • pp.188-194
    • /
    • 2013
  • 본 논문에서는 폐 영상에서 폐 혈관을 분할하고 정제하는 방법을 제안하였다. 제안된 방법은 다음과 같이 다섯 단계로 구성된다. 첫 번째, 폐 영상에서 히스토그램 변화율의 다항식 회귀 분석을 사용하여 임계값을 계산한다. 두 번째, 계산된 임계값으로 밝기값 기반 분할 방법을 사용하여 폐 혈관을 분할한다. 세 번째, 분할한 폐 혈관 영상에 2차원 연결 요소 레이블링 방법을 사용하고, 레이블링 요소의 크기와 이심률을 계산하여 좌측 및 우측 횡격막의 씨앗점을 결정한다. 네 번째, 결정된 씨앗점에서 3차원 영역 성장법을 사용하여 횡격막을 추출한다. 다섯 번째, 이진 영상의 3차원 연결 요소 레이블링 방법을 사용하여 폐 혈관 영상의 노이즈를 제거한다.

Mean-Shift의 색 수렴성과 모양 기반의 재조정을 이용한 실시간 머리 추적 알고리즘 (A Real-Time Head Tracking Algorithm Using Mean-Shift Color Convergence and Shape Based Refinement)

  • 정동길;강동구;양유경;나종범
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.1-8
    • /
    • 2005
  • 이 논문에서는 팬-틸트-줌 기능을 가지는 실시간 능동카메라 시스템에 적합한 2단계 머리 추적 알고리즘을 제안한다. 먼저, 색 수렴 단계에서는 머리의 모양을 타원으로 가정하고 모델 색-히스토그램을 얻는다. 그 후, 모델과 후보 타원의 색-히스토그램간의 유사도를 검사하여 목표 물체의 대략적인 위치를 구하기 위해 mean-shift 방법을 이용한다. 여기에서 영상 내 물체 영역의 색 분포가 카메라의 관찰 방향에 따라 달라지는 것을 고려하기 위하여, 모델 히스토그램 뿐 아니라 이전 프레임에서 얻어진 타원의 색 히스토그램도 함께 고려함으로써 mean-shift의 수렴성을 향상시킨다. 특히, 이전 프레임에서 결정된 타원 내부의 가장자리 영역에 포함되어 있는 배경 색 성분에 의한 오류 누적 문제를 해소하기 위해, 모델 히스토그램을 이용하여 타원의 크기를 적응적으로 축소함으로써 이전 추적 결과중 머리 영역에 해당되는 색 히스토그램을 얻는다. 또한 영상 내의 전역 움직임을 예측하고 이를 보상하여 정확한 초기 위치를 찾음으로써 mean-shift의 색 수렴성을 더욱 향상시킨다. 이 때, 고속 움직임 추정을 위해 1-D 투사 데이터 기반의 방법을 제안한다. 다음 단계에서는, 모양 정보를 이용하여 수렴단계에서 얻어진 타원의 위치와 크기를 보다 정확히 재조정한다. 이를 위해 영상 내 경사도의 방향에 기반한 강건한 모양 유사도 함수를 정의하고 사용한다. 다양한 환경을 고려한 실험을 통하여, 사람의 움직임이 빠른 경우, 영상 내 머리 크기의 변화가 심한 경우, 그리고 배경의 색과 모양이 매우 복잡한 경우에 대해서도 제안한 알고리즘이 비교적 정확히 추적을 수행함을 보였다. 아울러 제안한 알고리즘은 추적을 수행하는데 일반 PC에서 약 30fps의 처리 속도를 보여 실시간 시스템에 적합하다.

동일인 인식을 위한 컬러 공간의 탐색 및 결합 (Color Space Exploration and Fusion for Person Re-identification)

  • 남영호;김민기
    • 한국멀티미디어학회논문지
    • /
    • 제19권10호
    • /
    • pp.1782-1791
    • /
    • 2016
  • Various color spaces such as RGB, HSV, log-chromaticity have been used in the field of person re-identification. However, not enough studies have been done to find suitable color space for the re-identification. This paper reviews color invariance of color spaces by diagonal model and explores the suitability of each color space in the application of person re-identification. It also proposes a method for person re-identification based on a histogram refinement technique and some fusion strategies of color spaces. Two public datasets (ALOI and ImageLab) were used for the suitability test on color space and the ImageLab dataset was used for evaluating the feasibility of the proposed method for person re-identification. Experimental results show that RGB and HSV are more suitable for the re-identification problem than other color spaces such as normalized RGB and log-chromaticity. The cumulative recognition rates up to the third rank under RGB and HSV were 79.3% and 83.6% respectively. Furthermore, the fusion strategy using max score showed performance improvement of 16% or more. These results show that the proposed method is more effective than some other methods that use single color space in person re-identification.

내용 기반 영상 검색을 위한 에지 기반의 공간 기술자 (Edge-based spatial descriptor for content-based Image retrieval)

  • 김낙우;김태용;최종수
    • 대한전자공학회논문지SP
    • /
    • 제42권5호
    • /
    • pp.1-10
    • /
    • 2005
  • 오늘날 급격한 멀티미디어 정보의 증가에 따라 영상에서의 시각적 특성을 이용하여 멀티미디어 데이터를 검색하는 내용 기반 영상 검색 기법에 대한 관심이 크게 늘어나고 있다. 본 논문에서는 효과적인 영상 검색을 위한 새로운 접근으로서 edge correlogram과 color coherence vector를 이용한 에지 기반의 공간 기술자를 제안한다. 우선 color vector angle기법을 이용하여 주어진 영상을 고주파 성분과 저주파 성분의 영상으로 나눈다. 저주파 성분의 영상에서는 color coherence vector를 이용하여 평탄 화소의 공간적인 색상 분포를 추출함으로써 이를 평탄 영역에서의 특징 정보로서 활용한다. 반면, 고주파 성분의 영상에서는 edge correlogram으로부터 에지 화소들 간의 분포를 추출하여 이를 에지 영역에서의 특징 정보로 이용한다. 제안된 방법은 색상 간의 지엽적인 특성과 전체적인 특성을 모두 가지고 있기 때문에, 영상 간의 비교에 있어서 영상의 모양과 크기의 급격한 변화로 인한 오검출 등에 매우 강건하다. 또한, 영상에서의 구조적인 특징을 이용함으로써 복잡한 영상에 대해서도 간단하고 유연한 특징을 제공한다. 실험 결과는 영상 색인 및 검색에 있어서 제안된 알고리즘이 최근의 여러 히스토그램 정밀화 기법에 비하여 더 효과적임을 보여준다. 데이터베이스 내 영상의 색인을 위해서는 R*-tree 구조를 이용하였다.