• Title/Summary/Keyword: Histogram Modification

Search Result 32, Processing Time 0.026 seconds

The enhancement of medical image using edge-based histogram modification (에지 기반 히스토그램 평활화를 이용한 의료 영상의 개선)

  • 김경민;문윤식;박중조;정순원;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1603-1613
    • /
    • 1995
  • The goal of enhancement is to improve the perceptual aspect and visual appearance of images for human viewers. The objectives of image enhancement vary according to its specific application and an image enhancement algorithms used for a specific objective may not be accepted in some other applications. In this paper we review some of conventional enhancement techniques, such as global histogram equalization(GHE), local histogram equalization(LHE), clipped histogram equalization(CHE). We also describe some modified version of these algorithms. The proposed method is to detect detail information. We distinquish edge from nonedge and apply histigram equalization respectively. Simulation results demonstrate the performance of the proposed method for medical image.

  • PDF

Flickering Effect Reduction Based on the Modified Transformation Function for Video Contrast Enhancement

  • Yang, Hyeonseok;Park, Jinwook;Moon, Youngshik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.358-365
    • /
    • 2014
  • This paper proposes a method that reduces the flickering effect caused by A-GLG (Adaptive Gray-Level Grouping) during video contrast enhancement. Of the GLG series, A-GLG shows the best contrast enhancement performance. The GLG series is based on histogram grouping. Histogram grouping is calculated differently between the continuous frames with a similar histogram and causes a subtle change in the transformation function. This is the reason for flickering effect when the video contrast is enhanced by A-GLG. To reduce the flickering effect caused by A-GLG, the proposed method calculates a modified transformation function. The modified transformation function is calculated using a previous and current transformation function applied with a weight separately. The proposed method was compared with A-GLG for flickering effect reduction and video contrast enhancement. Through the experimental results, the proposed method showed not only a reduced flickering effect, but also video contrast enhancement.

Estimation of Noise Level in Complex Textured Images and Monte Carlo-Rendered Images

  • Kim, I-Gil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.381-394
    • /
    • 2016
  • The several noise level estimation algorithms that have been developed for use in image processing and computer graphics generally exhibit good performance. However, there are certain special types of noisy images that such algorithms are not suitable for. It is particularly still a challenge to use the algorithms to estimate the noise levels of complex textured photographic images because of the inhomogeneity of the original scenes. Similarly, it is difficult to apply most conventional noise level estimation algorithms to images rendered by the Monte Carlo (MC) method owing to the spatial variation of the noise in such images. This paper proposes a novel noise level estimation method based on histogram modification, and which can be used for more accurate estimation of the noise levels in both complex textured images and MC-rendered images. The proposed method has good performance, is simple to implement, and can be efficiently used in various image-based and graphic applications ranging from smartphone camera noise removal to game background rendition.

Modification-robust contents based motion picture searching method (변형에 강인한 내용기반 동영상 검색방법)

  • Choi, Gab-Keun;Kim, Soon-Hyob
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.215-217
    • /
    • 2008
  • The most widely used method for searching contents of mot ion picture compares contents by extracted cuts. The cut extract ion methods, such as CHD(Color Histogram Difference) or ECR(Edge Change Ratio), are very weak at modifications such as cropping, resizing and low bit rate. The suggested method uses audio contents for indexing and searching to make search be robust against these modification. Scenes of audio contents are extracted for modification-robust search. And based on these scenes, make spectral powers binary on each frequency bin. in the time-frequency domain. The suggested method shows failure rate less than 1% on the false positive error and the true negative error to the modified(using cropping, clipping, row bit rate, addtive frame) contents.

  • PDF

Weighted Histogram Equalization Method adopting Weber-Fechner's Law for Image Enhancement (이미지 화질개선을 위한 Weber-Fechner 법칙을 적용한 가중 히스토그램 균등화 기법)

  • Kim, Donghyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4475-4481
    • /
    • 2014
  • A histogram equalization method have been used traditionally for the image enhancement of low quality images. This uses the transformation function, which is a cumulative density function of an input image, and it has mathematically maximum entropy. This method, however, may yield whitening artifacts. This paper proposes the weighted histogram equalization method based on histogram equalization. It has Weber-Fechner's law for a human's vision characteristics, and a dynamic range modification to solve the problem of some methods, which yield a transformation function, regardless of the input image. Finally, the proposed transformation function was calculated using the weighted average of Weber-Fechner and the histogram equalization transformation functions in a modified dynamic range. The simulation results showed that the proposed algorithm effectively enhances the contrast in terms of the subjective quality. In addition, the proposed method has similar or higher entropy than the other conventional approaches.

Underwater image quality enhancement through Rayleigh-stretching and averaging image planes

  • Ghani, Ahmad Shahrizan Abdul;Isa, Nor Ashidi Mat
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.840-866
    • /
    • 2014
  • Visibility in underwater images is usually poor because of the attenuation of light in the water that causes low contrast and color variation. In this paper, a new approach for underwater image quality improvement is presented. The proposed method aims to improve underwater image contrast, increase image details, and reduce noise by applying a new method of using contrast stretching to produce two different images with different contrasts. The proposed method integrates the modification of the image histogram in two main color models, RGB and HSV. The histograms of the color channel in the RGB color model are modified and remapped to follow the Rayleigh distribution within certain ranges. The image is then converted to the HSV color model, and the S and V components are modified within a certain limit. Qualitative and quantitative analyses indicate that the proposed method outperforms other state-of-the-art methods in terms of contrast, details, and noise reduction. The image color also shows much improvement.

A Method of Deriving an Intensity Mapping Function by Using The Variational Technique (변분법을 이용한 명암도 변환 함수 획득 방법)

  • Kim, Jun-Hyung;Noh, Chang-Kyun;Ko, Sung-Jea
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.10-15
    • /
    • 2011
  • Histogram equalization is an effective method to enhance the contrast of the image. However, it can result in unwanted artifacts such as excessive contrast enhancement and noise amplification. These artifacts can be reduced by modifying an intensity mapping function which is generated by histogram equalization. In this paper, we present a variational approach to the modification of the intensity mapping function. We define a functional whose minimization produces a modified intensity mapping function. Experimental results show that the intensity mapping function obtained by the proposed method can enhance the contrast of the image without visual artifacts.

An Image Contrast Enhancement Technique Using Integrated Adaptive Fuzzy Clustering Model (IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.279-282
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) Model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved MEC can classify the image into two classes with unsupervised teaming rule. The proposed method is applied to some experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

A Fuzzy Image Contrast Enhancement Technique using the K-means Algorithm (K-means 알고리듬을 이용한 퍼지 영상 대비 강화 기법)

  • 정준희;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.295-299
    • /
    • 2002
  • This paper presents an image contrast enhancement technique for improving low contrast images. We applied fuzzy logic to develop an image contrast enhancement technique in the viewpoint of considering that the low pictorial information of a low contrast image is due to the vaguness or fuzziness of the multivalued levels of brightness rather than randomness. The fuzzy image contrast enhancement technique consists of three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. In the stage of image fuzzification, we need to select a crossover point. To select the crossover point automatically the K-means algorithm is used. The problem of crossover point selection can be considered as the two-category, object and background, classification problem. The proposed method is applied to an experimental image with 256 gray levels and the result of the proposed method is compared with that of the histogram equalization technique. We used the index of fuzziness as a measure of image quality. The result shows that the proposed method is better than the histogram equalization technique.

A HDR Algorithm for Single Image Based on Exposure Fusion Using Variable Gamma Coefficient (가변적 감마 계수를 이용한 노출융합기반 단일영상 HDR기법)

  • Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1059-1067
    • /
    • 2021
  • In this paper, a HDR algorithm for a single image is proposed using the exposure fusion, that adaptively calculates gamma correction coefficients according to the image distribution. Since typical HDR methods should use at least three images with different exposure values at the same scene, the main problem was that they could not be applied at the single shot image. Thus, HDR enhancements based on a single image using tone mapping and histogram modifications were recently presented, but these created some location-specific noises due to improper corrections. Therefore, the proposed algorithm calculates proper gamma coefficients according to the distribution of the input image and generates different exposure images which are corrected by the dark and the bright region stretching. A HDR image reproduction controlling exposure fusion weights among the gamma corrected and the original pixels is presented. As the result, the proposed algorithm can reduce certain noises at both the flat and the edge areas and obtain subjectively superior image quality to that of conventional methods.