• Title/Summary/Keyword: Hippocampus Segmentation

Search Result 18, Processing Time 0.026 seconds

Implementation of 2D Active Shape Model-based Segmentation on Hippocampus

  • Izmantoko, Yonny S.;Yoon, Ho-Sung;Adiya, Enkhbolor;Mun, Chi-Woong;Huh, Young;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Hippocampus is an important part of brain which is related with early memory storage and spatial navigation. By observing the anatomy of hippocampus, some brain diseases effecting human memory (e.g. Alzheimer, schizophrenia, etc.) can be diagnosed and predicted earlier. The diagnosis process is highly related with hippocampus segmentation. In this paper, hippocampus segmentation using Active Shape Model, which not only works based on image intensity, but also by using prior knowledge of hippocampus shape and intensity from the training images, is proposed. The results show that ASM is applicable in segmenting hippocampus from whole brain MR image. It also shows that adding more images in the training set results in better accuracy of hippocampus segmentation.

Contrast-enhanced Bias-corrected Distance-regularized Level Set Method Applied to Hippocampus Segmentation

  • Selma, Tisa;Madusanka, Nuwan;Kim, Tae-Hyung;Kim, Young-Hoon;Mun, Chi-Woong;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1236-1247
    • /
    • 2016
  • Recently, the level set has become a popular method in many research fields. The main reason is that it can be modified into many variants. One such case is our proposed method. We describe a contrast-enhancement method to segment the hippocampal region from the background. However, the hippocampus region has quite similar intensities to the neighboring pixel intensities. In addition, to handle the inhomogeneous intensities of the hippocampus, we used a bias correction before hippocampal segmentation. Thus, we developed a contrast-enhanced bias-corrected distance-regularized level set (CBDLS) to segment the hippocampus in magnetic resonance imaging (MRI). It shows better performance than the distance-regularized level set evolution (DLS) and bias-corrected distance-regularized level set (BDLS) methods in 33 MRI images of one normal patient. Segmentation after contrast enhancement and bias correction can be done more accurately than segmentation while not using a bias-correction method and without contrast enhancement.

A Hippocampus Segmentation in Brain MR Images using Level-Set Method (레벨 셋 방법을 이용한 뇌 MR 영상에서 해마영역 분할)

  • Lee, Young-Seung;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1075-1085
    • /
    • 2012
  • In clinical research using medical images, the image segmentation is one of the most important processes. Especially, the hippocampal atrophy is helpful for the clinical Alzheimer diagnosis as a specific marker of the progress of Alzheimer. In order to measure hippocampus volume exactly, segmentation of the hippocampus is essential. However, the hippocampus has some features like relatively low contrast, low signal-to-noise ratio, discreted boundary in MRI images, and these features make it difficult to segment hippocampus. To solve this problem, firstly, We selected region of interest from an experiment image, subtracted a original image from the negative image of the original image, enhanced contrast, and applied anisotropic diffusion filtering and gaussian filtering as preprocessing. Finally, We performed an image segmentation using two level set methods. Through a variety of approaches for the validation of proposed hippocampus segmentation method, We confirmed that our proposed method improved the rate and accuracy of the segmentation. Consequently, the proposed method is suitable for segmentation of the area which has similar features with the hippocampus. We believe that our method has great potential if successfully combined with other research findings.

Hippocampus Volume Measurement for the determination of MCI

  • Jeon, Woong-Gi;Izmantoko, Yonny S.;Son, Ji-Hyeon;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1449-1455
    • /
    • 2012
  • This paper has developed a system for early diagnosis of senile dementia and mild cognitive impairment (MCI) by developing software to measure the volume of hippocampus. This software consists of two parts; segmentation and analysis. The segmentation part uses ROI and region growing to segment hippocampus region. On the other hand, the analysis part creates a volume rendering of hippocampus. This software is expected contribute in these research fields for dementia diagnosis and its medication planning.

Semi-automated Approach to Hippocampus Segmentation Using Snake from Brain MRI

  • Al Shidaifat, Ala'a Ddin;Al-Shdefat, Ramadan;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.5
    • /
    • pp.566-572
    • /
    • 2014
  • The hippocampus has been known as one of the most important structure related to many neurological disorders, such as Alzheimer's disease. This paper presents the snake model to segment hippocampus from brain MRI. The snake model or active contour model is widely used in medical image processing fields, especially image segmentation they look onto nearby edge, localizing them accurately. We applied a snake model on brain MRI. Then we compared our results with an active shape approach. The results show that hippocampus was successfully segmented by the snake model.

Compar ison of Level Set-based Active Contour Models on Subcor tical Image Segmentation

  • Vongphachanh, Bouasone;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.827-833
    • /
    • 2015
  • In this paper, we have compared three level set-based active contour (LSAC) methods on inhomogeneous MR image segmentation which is known as an important role of brain diseases to diagnosis and treatment in early. MR image is often occurred a problem with similar intensities and weak boundaries which have been causing many segmentation methods. However, LSAC method could be able to segment the targets such as the level set based on the local image fitting energy, the local binary fitting energy, and local Gaussian distribution fitting energy. Our implemented and tested the subcortical image segmentations were the corpus callosum and hippocampus and finally demonstrated their effectiveness. Consequently, the level set based on local Gaussian distribution fitting energy has obtained the best model to accurate and robust for the subcortical image segmentation.

Contour detection of hippocampus using Dynamic Contour Model and Region Growing (영역확장법과 동적외곽선모델을 이용한 해마(hippocampus)의 외곽선 검출)

  • Jang, D.P.;Kim, H.D.;Lee, D.S.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.116-118
    • /
    • 1997
  • In hippocampal morphology Abnormalities, including unilateral or bilateral volume loss, are known to occur in epilepsy, Alzheimer's disease, and in certain amnestic syndromes. To detect such abnormalities in hippocampal morphology, we present a method that combines region growing and dynamic contour model to detect hippocampus from MRI brain data. The segmentation process is performed two steps. First region growing with a seed point is performed in the region of hippocampus and the initial contour of dynamic contour model is obtained. Second, the initial contour is modified on the basis of criteria that integrate energy with contour smoothness and the image gradient along the contour. As a result, this method improves fairly sensitivity to the choice of the initial seed point, which is often seen by conventional contour model. The power and practicality of this method have been tested on two brain datasets. Thus, we have developed an effective algorithm to extract hippocampus from MRI brain data.

  • PDF

Design of 3D Visualization Software Tool Based on VTK for Manual Brain Segmentation of MRI (뇌 MR영상 수동분할을 위한 VTK기반의 3차원 가시화 소프트웨어 툴 설계)

  • Yoon, Ho-Sung;Hewage, Nuwan;Moon, Chi Wong;Kim, Young-Hoon;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Mild Cognitive Impairment(MCI) is a prior step to Alzheimer's Disease(AD). It is different from AD which is seriously affecting daily life. Particularly, the hippocampus could be charged a crucial function for forming memory. MCI has a high risk about progress to AD. Our investigated research for a relationship between hippocampus and AD has been studied. The measurement of hippocampus volumetric is one of the most commonly used method. The three dimensional reconstructed medical images could be passible to interpret and its examination in various aspects but the cost of brain research with the medical equipment is very high. In this study, 3D visualization was performed from a series of brain Magnetic Resonance Images(MRI) and we have designed and implemented a competitive software tool based on the open libraries of Visualization ToolKit(VTK). Consequently, our visualization software tool could be useful to various medical fields and specially prognosis and diagnosis for MCI patients.

Assessment of Mild Cognitive Impairment in Elderly Subjects Using a Fully Automated Brain Segmentation Software

  • Kwon, Chiheon;Kang, Koung Mi;Byun, Min Soo;Yi, Dahyun;Song, Huijin;Lee, Ji Ye;Hwang, Inpyeong;Yoo, Roh-Eul;Yun, Tae Jin;Choi, Seung Hong;Kim, Ji-hoon;Sohn, Chul-Ho;Lee, Dong Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.164-171
    • /
    • 2021
  • Purpose: Mild cognitive impairment (MCI) is a prodromal stage of Alzheimer's disease (AD). Brain atrophy in this disease spectrum begins in the medial temporal lobe structure, which can be recognized by magnetic resonance imaging. To overcome the unsatisfactory inter-observer reliability of visual evaluation, quantitative brain volumetry has been developed and widely investigated for the diagnosis of MCI and AD. The aim of this study was to assess the prediction accuracy of quantitative brain volumetry using a fully automated segmentation software package, NeuroQuant®, for the diagnosis of MCI. Materials and Methods: A total of 418 subjects from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease cohort were included in our study. Each participant was allocated to either a cognitively normal old group (n = 285) or an MCI group (n = 133). Brain volumetric data were obtained from T1-weighted images using the NeuroQuant software package. Logistic regression and receiver operating characteristic (ROC) curve analyses were performed to investigate relevant brain regions and their prediction accuracies. Results: Multivariate logistic regression analysis revealed that normative percentiles of the hippocampus (P < 0.001), amygdala (P = 0.003), frontal lobe (P = 0.049), medial parietal lobe (P = 0.023), and third ventricle (P = 0.012) were independent predictive factors for MCI. In ROC analysis, normative percentiles of the hippocampus and amygdala showed fair accuracies in the diagnosis of MCI (area under the curve: 0.739 and 0.727, respectively). Conclusion: Normative percentiles of the hippocampus and amygdala provided by the fully automated segmentation software could be used for screening MCI with a reasonable post-processing time. This information might help us interpret structural MRI in patients with cognitive impairment.