Yang, Ji Seon;Jeon, Sujeong;Yoon, Kee Dong;Yoon, Shin Hee
The Korean Journal of Physiology and Pharmacology
/
제22권6호
/
pp.689-696
/
2018
Increasing evidence implicates changes in $[Ca^{2+}]_i$ and oxidative stress as causative factors in amyloid beta ($A{\beta}$)-induced neuronal cell death. Cyanidin-3-glucoside (C3G), a component of anthocyanin, has been reported to protect against glutamate-induced neuronal cell death by inhibiting $Ca^{2+}$ and $Zn^{2+}$ signaling. The present study aimed to determine whether C3G exerts a protective effect against $A{\beta}_{25-35}$-induced neuronal cell death in cultured rat hippocampal neurons from embryonic day 17 fetal Sprague-Dawley rats using MTT assay for cell survival, and caspase-3 assay and digital imaging methods for $Ca^{2+}$, $Zn^{2+}$, MMP and ROS. Treatment with $A{\beta}_{25-35}$ ($20{\mu}M$) for 48 h induced neuronal cell death in cultured rat pure hippocampal neurons. Treatment with C3G for 48 h significantly increased cell survival. Pretreatment with C3G for 30 min significantly inhibited $A{\beta}_{25-35}$-induced $[Zn^{2+}]_i$ increases as well as $[Ca^{2+}]_i$ increases in the cultured rat hippocampal neurons. C3G also significantly inhibited $A{\beta}_{25-35}$-induced mitochondrial depolarization. C3G also blocked the $A{\beta}_{25-35}$-induced formation of ROS. In addition, C3G significantly inhibited the $A{\beta}_{25-35}$-induced activation of caspase-3. These results suggest that cyanidin-3-glucoside protects against amyloid ${\beta}$-induced neuronal cell death by reducing multiple apoptotic signals.
Objective : Glutamate induced excitotoxicity is one of the leading causes of cell death under pathologic condition. However, there is controversy whether excitotoxicity may also participate in the neuronal death under low intensity insult such as simple hypoxia or hypoglycemia. To investigate the role of NMDA receptor in low intensity insult, we chose anoxia as the method of injury and used organotypically cultured hippocampal slice as the material of experiment. Materials & Methods : The hippocampal slices cultured for 2-3 weeks were exposed to 60 minutes of complete oxygen deprivation(anoxia). Neuronal death was assessed with Sytox stain. Corrected optical density of fluorescence in gray scale, used as cellular death indicator, was obtained from pictures taken at 24 and 48 hours following the insult. The well-known in vivo phenomenon of regional difference in susceptibility of hippocampal sub-fields to ischemic insult was reproduced in HOSC(hippocampal organotypic slice culture) by complete oxygen deprivation injury. Results : $CA_1$ was the most vulnerable to complete oxygen deprivation in hippocampus while $CA_3$ was resistant. Oxygen deprivation for 10 and 20 minutes with glucose(6.5g/l) present was insufficient to induce neuronal death in the cultured hippocampal slice. However, after 30 minutes exposure under anoxic condition, neuronal death was able to be detected in the center of $CA_1$ area. The intensity and area of fluorescence indicating cell death correlated with the duration of oxygen deprivation. NMDA receptor and non-NMDA receptor blocking with MK-801(30 & $60{\mu}M$) and CNQX($100{\mu}M$) did not provide cellular protection to HOSC against damage induced by oxygen deprivation, but increased intracellular calcium buffering capacity with BAPTA-AM($10{\mu}M$) was effective in preventing neuronal death (p=0.01, Student's t-test). Cycloheximide($1{\mu}g/ml$, $10{\mu}g/ml$) provided no protection to HOSC against insult of complete oxygen deprivation for 60 minutes and combined therapy of MK-801(30 & $60{\mu}M$) and cycloheximide(1 & $10{\mu}g/ml$) was also ineffective in preventing neuronal death. Conclusion : The results of this study show that the another mechanism not associated with glutamate receptor(NMDA & non NMDA) may play major role in cell death mechanisms induced by complete oxygen deprivation and increased intracellular calcium during anoxia may participate in the neuronal death mechanism of oxygen deprivation. Further investigation of the calcium entry channel activated during oxygen deprivation is necessary to understand the neuronal death of anoxia.
한국응용약물학회 2004년도 Annual Meeting of the Korean Society ofApplied Pharmacology
/
pp.124-128
/
2004
We have assessed amyloid ${\beta}-peptide$$(A{\beta})-induced$ neurotoxicity in primary neurons and organotypic hippocampal slice cultures (OHC) in rat. Exposing cultured hippocampal and cerebellar granule neurons to $A{\beta}$ resulted in a decrease of MTT reduction, and in destruction of neuronal integrity. Treatment of these neurons with tunicamycin, an inhibitor of N-glycosylation in the endoplasmic reticulum (ER), also decreased MTT reduction in these neurons. S-allyl-L-cysteine (SAC), an active organosulfur compound in aged garlic extract, protected hippocampal but not cerebellar granule neurons against $A{\beta}$- or tunicamycin-induced toxicity. In the hippocampal neurons, protein expressions of casapse-12 and GRP 78 were significantly increased after $A{\beta}_{25-35}$ or tunicamycin treatment. The increase in the expression of caspase-12 was suppressed by simultaneously adding $1{\mu}M$ SAC in these neurons. In contrast, in the cerebellar granule neurons, the expression of caspase-12 was extremely lower than that in the hippocampal neurons, and an increase in the expression by $A{\beta}_{25-35}$ or tunicamycin was not detected. In OHC, ibotenic acid (IBO), a NMDA receptor agonist, induced concentration-dependent neuronal death. When $A{\beta}$ was combined with IBO, there was more intense cell death than with IBO alone. SAC protected neurons in the CA3 area and the dentate gyrus (DG) from the cell death induced by IBO in combination with $A{\beta}$, although there was no change in the CA1 area. Although protein expression of casapse-12 in the CA3 area and the DG was significantly increased after the simultaneous treatment of AI3 and IBO, no increase in the expression was observed in the CA1 area. These results suggest that SAC could protect against the neuronal cell death induced by the activation of caspase-12 in primary cultures and OHC. It is also suggested that multiple mechanisms may be involved in neuronal death induced by AI3 and AI3 in combination with IBO.
Kim, Soo-Man;Shim, Eun-Sheb;Kim, Bum-Hoi;Sohn, Young-Joo;Kim, Sung-Hoon;Jung, Hyuk-Sang;Sohn, Nak-Won
대한한의학회지
/
제29권5호
/
pp.29-40
/
2008
Objectives : It has been reported that Sophorae Subprostratae Radix (SSR) has a neuroprotective effect on cerebral ischemia in animals. In the present study, the authors investigated the neuroprotective effect of SSR on glutamate excitotoxicity. Glutamate excitotoxicity was induced by using NMDA, AMPA, and KA in PC12 cells and in organotypic hippocampal slice cultures. Methods :Methanolic extract of SSR was added at 0.5, 5, and 50 ${\mu}$g/ml to culture media for 24 hours. The effects of SSR were evaluated by measuring of cell viability, PI-stained neuronal cell death, TUNEL-positive cells, and MAP-2 immunoreactivity. Results : SSR increased PC12 cell viabilities significantly against AMPA-induced excitotoxicity, but not against NMDA-induced or KA-induced excitotoxicity. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in the CA1, CA3, and DG hippocampal regions and reduced TUNEL-positive cells significantly in CA1 and DG regions. In organotypic hippocampal slice cultures damaged by AMPA-induced excitotoxicity, SSR attenuated neuronal cell death and reduced TUNEL-positive cell numbers significantly in the CA1 and DG regions. In organotypic hippocampal slice cultures damaged by KA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in CA3, but did not reduce TUNEL-positive cell numbers in CA1, CA3 or DG. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated pyramidal neuron neurite retraction and degeneration in CA1. Conclusions : These results suggest that the neuroprotective effects of SSR are related to antagonistic effects on the NMDA and AMPA receptors of neuronal cells damaged by excitotoxicity and ischemia.
Statins mediate vascular protection and reduce the prevalence of cardiovascular diseases. Recent work indicates that statins have anticonvulsive effects in the brain; however, little is known about the precise mechanism for its protective effect in kainic acid (KA)-induced seizures. Here, we investigated the protective effects of atorvastatin pretreatment on KA-induced neuroinflammation and hippocampal cell death. Mice were treated via intragastric administration of atorvastatin for 7 days, injected with KA, and then sacrificed after 24 h. We observed that atorvastatin pretreatment reduced KA-induced seizure activity, hippocampal cell death, and neuroinflammation. Atorvastatin pretreatment also inhibited KA-induced lipocalin-2 expression in the hippocampus and attenuated KA-induced hippocampal cyclooxygenase-2 expression and glial activation. Moreover, AKT phosphorylation in KA-treated hippocampus was inhibited by atorvastatin pretreatment. These findings suggest that atorvastatin pretreatment may protect hippocampal neurons during seizures by controlling lipocalin-2-associated neuroinflammation.
Lim Baek Vin;Lee Choong Yeol;Kang Jin Oh;Kim Chang Ju;Cho Sonhae
동의생리병리학회지
/
제18권1호
/
pp.236-242
/
2004
Cerebral ischemia resulting from transient or permanent occlusion of cerebral arteries leads to neuronal cell death and eventually causes neurological impairments. Bee venom has been used for the treatment inflammatory disease. In the present study, the effects of bee venom on apoptosis and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils were investigated using immunohistochemistry for cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), caspase-3, and 5-bromo-2'-deoxyuridine (BrdU). It was shown that apoptotic cell death and cell proliferation in the hippocampal dentate gyrus were significantly increased following transient global ischemia in gerbils and that treatment of bee venom suppressed the ischemia-induced increase in apoptosis and cell proliferation in the dentate gyrus. The present results also showed that 1 mg/kg bee-venom treatment suppressed the ischemia-induced increasing apoptosis, cell proliferation, and COX-2 expression in the dentate gyrus. It is possible that the suppression of cell proliferation is due to the reduction of apoptotic cell death by treatment of bee venom. In the present study, bee venom was shown to prosses anti-apoptotic effect in ischemic brain disease, and this protective effect of bee venom against ischemia-induced neuronal cell death is closely associated with suppression on caspase-3 expression.
Objectives : The present study investigated the effects of Achyranthis Radix on short-term memory, apoptotic neuronal cell death in the hippocampus following transient global ischemia in gerbils. Methods : The gerbils were divided into 5 groups(n=10); Sham operation group, ischemia-induced group, ischemia-induced and 50 mg/kg Achyranthis Radix-treated group, ischemia-induced and 100 mg/kg Achyranthis Radix-treated group, ischemia-induced and 200 mg/kg Achyranthis Radix-treated group. For this study, a step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay, immunohistochemistry for caspase-3 and BrdU(5-Bromo-2'-deoxyuridine), and western blotting for bax, bcl-2 were performed. Results : The results revealed that ischemic injury impaired short-term memory and increased apoototic neuronal cell death in the hippocampal CA1(cornu ammonis area 1) region. Ischemic injury enhanced cell proliferation in the hippocampal CA1 region, the compensatory and adaptive process for excessive apoptosis. Achyranthis Radix treatment improved short-term memory by suppressing ischemia-induced apoptotic neuronal cell death in the hippocampal CA1 region. Also, Achyranthis Radix suppressed the ischemia-induced increase in cell proliferation in the hippocampal CA1 region. Conclusions : We showed that Achyranthis Radix alleviates ischemia-induced apoptotic neuronal cell death, thus facilitates the recovery of short-term memory impairment induced by ischemic cerebral injury.
We investigated that water extract of Acanthopanax sessiliflorus roots rescued the N-methyl-D-aspartate (NMDA), agonist of glutamate receptor, -induced toxicity in rat organotypic hippocampal slice culture. When the cell death in NMDA only-treated hippocampal slices was set 100%, A. sessiliflorus decreased the cell death to 75.4, 51.6, 48.9, and 40.6% at 1, 10, 50, and $100\;{\mu}g/ml$ treatment, respectively. On the basis of these results, the water extract of A. sessiliflorus roots may be a preventive agent against NMDA-induced cytotoxicity.
Brain ischemia leads to overstimulation of N-methyl-D-aspartate (NMDA) receptors, referred as excitotoxicity, which mediates neuronal cell death. However, less attention has been paid to changes in synaptic activity and morphology that could have an important impact on cell function and survival following ischemic insult. In this study, we investigated the effects of reperfusion after oxygen/glucose deprivation (OGD) not only upon neuronal cell death, but also on ultrastructural and biochemical characteristics of postsynaptic density (PSD) protein, in the stratum lucidum of the CA3 area in organotypic hippocampal slice cultures. After OGD/reperfusion, neurons were found to be damaged; the organelles such as mitochondria, endoplasmic reticulum, dendrites, and synaptic terminals were swollen; and the PSD became thicker and irregular. Ethanolic phosphotungstic acid staining showed that the density of PSD was significantly decreased, and the thickness and length of the PSD were significantly increased in the OGD/reperfusion group compared to the control. The levels of PSD proteins, including PSD-95, NMDA receptor 1, NMDA receptor 2B, and calcium/calmodulin-dependent protein kinase II, were significantly decreased following OGD/reperfusion. These results suggest that OGD/reperfusion induces significant modifications to PSDs in the CA3 area of organotypic hippocampal slice cultures, both morphologically and biochemically, and this may contribute to neuronal cell death and synaptic dysfunction after OGD/reperfusion.
In order to reproduce chronic cerebral hypoperfusion as it occurs in human aging and Alzheimer's disease, we introduced permanent, bilateral occlusion of the common carotid arteries (BCCAO) in rats (Farkas et al, 2007). Here, we induced BCCAO in two different rat strains in order to determine whether there was a strain difference in the pathogenic response to BCCAO. Male Wistar and Sprague-Dawley (SD) rats (250-270 g) were subjected to BCCAO for three weeks. Kluver-Barrera and cresyl violet staining were used to evaluate white matter and gray matter damage, respectively. Wistar rats had a considerably higher mortality rate (four of 14 rats) as compared to SD rats (one of 15 rats) following BCCAO. Complete loss of pupillary light reflex occurred in all Wistar rats that survived, but loss of pupillary light reflex did not occur at all in SD rats. Moreover, BCCAO induced marked vacuolation in the optic tract of Wistar rats as compared to SD rats. In contrast, SD rats showed fewer CA1 hippocampal neurons than Wistar rats following BCCAO. These results suggest that the neuropathological process induced by BCCAO takes place in a region-specific pattern that varies according to the strain of rat involved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.