• 제목/요약/키워드: Hip muscle force

Search Result 43, Processing Time 0.029 seconds

A research about the processing for producing remedy sheets that radiate far infrared rays and magnetic force

  • Kim, eun-won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.68
    • /
    • pp.9-20
    • /
    • 2001
  • A study on processing for producing cure seat radiated by Original Infrared Rays and Magnatic force. We are well aware that Original Infrared Rays and Magnatic force influence on our human body benificially. In the technical background of this research product, we treated that the product has some operations of ceramic hardwood charcoal, far infrared rays and magnetic, so it can serve large part curative values made of far infrared rays and magnetic force of ceramics. Also, in the special quality of the product deal with ceramic, hard charcoal, ferrite, gelatin what is needed in prodution. And among them, ferrite, ceramic and hard charcoal are introduced by the manufacturing process of the moleculeization. In concluding, this study described the manufacturing process on the basis of the worksheets and arranged theuseful effect which effect on human body. There are so many symptoms in the pain of muscle. It's very various. for example, it is the cause of the liver, the spleen and a kidney function's weakening. the cause of the backbone subluxation, the cause of the shoulderjoint and scapula, the cause of the sacrum andiliacjoint, the cause of hip joint and the cause of a sprain. In this thesis, we mainly deal with the method which the muscle and nervous system disease by fatigue and a sprain cure seat radiated by Original Infrared Rays and Magnatic force. then, Original Infrared Rays and Magnatic force pack up frapezius muscle, gluteus minimum muscle, gluteus medius muscle, gluteus maximus muscle, pririformis muscle around the spine. through this course the moral pressure by the nervous system disease can be treat.

  • PDF

The Effects of Virtual Reality-based Continuous Slow Exercise on Factors for Falls in the Elderly (가상현실에서 연속적 느린 운동이 노인의 낙상 요인에 미치는 영향)

  • Kim, Jung-Jin;Gu, Seul;Lee, Jin-Ju;Kim, Yu-Shin;Yoon, Bum-Chul
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.90-97
    • /
    • 2012
  • Purpose: The purpose of this study was to assess the effects of virtual reality-based continuous slow exercise on muscle strength and dynamic balance capacity, in older adults over 65 years of age. Methods: Twenty-six volunteers were randomly divided into two groups; a Virtual Reality (VR) exercise-group ($67.8{\pm}4.1$ yrs) and a Control group ($65.5{\pm}5.2$ yrs). The VR group participated in eight weeks of virtual reality exercise, utilizing modified Tai-Chi provided by a motion capture system, and the Control group had no intervention. The hip muscle strength and dynamic balance of the members of both the VR group and the Control group were measured at pre- and post-intervention, using a multimodal dynamometer, and backward stepping test, respectively. Results: 1. After the 8-week VR-based exercise, the VR group showed significant improvement of hip strength, compared to the control group: hip extension (p=0.00), flexion (p=0.00), abduction (p=0.00), and adduction (p=0.00). 2. After the 8-week VR-based exercise, the VR group showed significant improvement of dynamic balance capacity as ground reaction force, compared to the control group. Eyes opened backward stepping test: Fx (+) (p=0.00), Fy (-) (p=0.02), Ver (+) (p=0.02) direction. Eyes closed backward stepping test: Fx (+) (p=0.04), Fy (-) (p=0.04), Ver (+) (p=0.03) direction. Conclusion: The VR group showed improvement of their hip muscle strength, and dynamic balance capacity. Therefore VR-based continuous slow exercise would contribute to reducing the risk of falls in the elderly.

A study on the processing for producing remedy sheets taking advantage of natural mineral resources (천연원료를 이용한 치료시트 제조에 관한 연구)

  • Kim eon-won;Choi Jung Sang
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.243-257
    • /
    • 2002
  • A study on processing for producing cure seat radiated by Original Infrared Rays and Magnatic force. We are well aware that Original Infrared Rays and Magnatic force influence on our human body benificially. In the technical background of this research product, we treated that the product has some operations of ceramic hardwood charcoal, far infrared rays and magnetic, so it can serve large part curative values made of far infrared rays and magnetic force of ceramics. Also, in the special quality of the product deal with ceramic, hard charcoal, ferrite, gelatin what is needed in production. And among them, ferrite, ceramic and hard charcoal are introduced by the manufacturing process of the moleculeization. In concluding, this study described the manufacturing process on the basis of the worksheets and arranged the useful effect which effect on human body. There are so many symptoms in the pain of muscle. It's very various. for example, it is the cause of the liver, the spleen and a kidney function's weakening. the cause of the backbone subluxation, the cause of the shoulder joint and scapula, the cause of the sacrum and iliacjoint, the cause of hip joint and the cause of a sprain. In this thesis, we mainly deal with the method which the muscle and nervous system disease by fatigue and a sprain cure seat radiated by Original Infrared Rays and Magnatic force. then, Original Infrared Rays and Magnatic force pack up frapezius muscle, gluteus minimum muscle, gluteus medius muscle, gluteus maximus muscle, pririformis muscle around the spine. through this course the moral pressure by the nervous system disease can be treat.

  • PDF

Comparison of Isometric Knee Extension Torque-Angle Relationship between Taekwondo Athletes and Normal Adults (태권도 선수와 일반인의 등척성 무릎신전 토크-각도 관계 특성 비교 분석)

  • Jo, Gye-Hun;Oh, Jeong-Hoon;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.275-281
    • /
    • 2015
  • Objective : In order for Taekwondo athletes to perform destructive kicking performance, they are expected to have Taekwondo-specific muscle properties such as high muscle strength and power. The purpose of this study was to investigate the joint angle-dependent force-producing property of Taekwondo athletes' knee extensor muscles, which is one of the primary muscle groups involved in kicking performance. Method : Ten Taekwondo male athletes (age: $19.9{\pm}0.7yrs$, height: $180.6{\pm}6.2cm$, body mass: $75.9{\pm}8.9kg$, career: $9.2{\pm}2.9yrs$.) and 10 healthy male non-athletes (age: $26.3{\pm}2.6yrs$, height: $174.2{\pm}4.8cm$, body mass: $72.8{\pm}7.7kg$) participated in this study. Subjects performed maximum isometric knee extension at knee joint angles of $40^{\circ}$, $60^{\circ}$, $80^{\circ}$, and $100^{\circ}$ (the full knee extension was set to $0^{\circ}$) with the hip joint angles of $0^{\circ}$ and $80^{\circ}$ (the full extension was set to $0^{\circ}$). During the contractions, knee extension torque using an isokinetic dynamometer simultaneously with muscle activities of the rectus femoris (RF), and the vastus lateralis (VL) and vastus medialis (VM) using surface electromyography were recorded. Based on the torque values at systematically different knee-hip joint angles, the joint torque-angle relationships were established and then the optimal joint angle for the knee extensor was estimated. Results : The results of this study showed that the isometric knee extension torque values were greater for the Taekwondo athletes compared with the non-athlete group at all hip-knee joint angle combinations (p<.05). When the hip joint was set at $80^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($313.61{\pm}36.79Nm$ and $221.43{\pm}35.92Nm$, respectively; p<.05) but the estimated optimum knee joint angles were similar ($62.33{\pm}5.71^{\circ}$ and $62.30{\pm}4.67^{\circ}$ for the Taekwondo athletes and non-athlete group, respectively). When the hip joint was set at $0^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($296.29{\pm}45.13Nm$ and $199.58{\pm}25.23Nm$, respectively; p<.05) and the estimated optimum knee joint angle was larger for the Taekwondo athletes compared with the non-athlete group ($78.47{\pm}5.14^{\circ}$ and $67.54{\pm}5.77^{\circ}$, respectively; p<.05). Conclusion : The results of this study suggests that, compared with non-athletes, Taekwondo athletes have stronger knee extensor strength at all hip-knee joint angle combinations as well as longer optimum muscle length, which might be optimized for the event-specific required performance through prolonged training period.

Analysis on lower extremity joint moment during a developpe devant (Developpe devant 수행시 하지 관절 모멘트 분석)

  • Park, Ki-Sa;Shin, Sung-Hu;Kwon, Moon-Seok;Kim, Tae-Hwan;Lee, Hung-Na
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.133-144
    • /
    • 2004
  • The purpose of this study was to analyze the joint moment on lower extremity during a developpe devant. Data were collected by Kwon3D, KwonGRF program. Two professional modem female dancers were participated in this experiment. Subjects performed a developpe devant in meddle heights. On the axes of X, Y, Z, it was shown that the maximum joint moment was occurred in hip joint. The moments are plotted during developpe devant. The ankle muscles generate a plantar flexion moment and the knee muscles generate a flexion moment and The hip muscles generate a extension moment. So these muscles of joint muscles were known to play a key role in keeping the body balance while doing developpe devant. In addition adduction moment occurred at hip, knee, an ankle in the order of amount, we could assume from this data that him out motion started from the hip joint. There was small active turn out possible below the hip joint. A small amount of extra turn out could be obtained when standing because of flexion between the foot and floor, which could be used to give a passive external rotation force to the whole leg and this could produce a rotation between the knee and foot. This passive external rotation could produce very damaging results. Therefore, lower extremity joint muscles such as hip, knee, and ankle muscle should be trained to keep the body balance and prevent injury during developpe devant performance. And for the safe and perfect turn ort performance, hip joint abduction, the most important external rotating muscle for him out is needed to train and full stretching should be done in advance.

The Effect of High-Heeled Shoes With Total Contact Inserts in the Gait Characteristics of Young Female Adults During Lower Extremity Muscle Fatigue (하지 근육의 피로상태 동안 높은 굽 신발에 적용한 전면접촉인솔이 젊은 여성의 보행 특성에 미치는 영향)

  • Ko, Eun-Hye;Choi, Houng-Sik;Kim, Tack-Hoon;Cynn, Heon-Seock;Kwon, Oh-Yun;Choi, Kyu-Han
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.38-45
    • /
    • 2008
  • This study investigated gait characteristics, kinematics, and kinetics in the lower extremities between two different shoe conditions (high heeled shoes (7 cm), and high heeled shoes with a total contact insert (TCI)) after lower extremity muscle fatigue. Although TCI shave been applied in high heeled shoes to increase comfort and to decrease foot pressure, no study has attempted to identify the effects of TCI in fatigue conditions. The purpose of this study was to determine the effects of walking in high heeled shoes with TCI after lower extremity muscle fatigue was induced. This study was carried out in a motion analysis laboratory at Hanseo University. A volunteer sample of 14 healthy female subjects participated. All in fatigue conditions, the subjects were divided into two groups. The muscle fatigue was induced by 40 voluntary dorsi- and plantar-flexion exercises and 40 heel-rise exercises of the dominant foot. Surface electromyography was used to confirm the localized muscle fatigue using power spectral analysis of three muscles (tibialis anterior, gastrocnemius medialis and lateralis). The results were as follows: (1) In muscle fatigue conditions, the use of TCI decreased the peak flexion angle of the hip joint significantly in the early stance phase (p<.05) and increased the peak hip flexion moment in the terminal stance phase (p<.05). (2) In muscle fatigue conditions, the application of TCI also increased peak hip power generation in the early stance phase and peak hip power absorption in the terminal stance phase (p<.05). (3) In muscle fatigue conditions, the use of TCI reduced the impact force significantly and increased the secondary peak vertical GRF. These findings suggest that the TCI may provide beneficial effects when muscle fatigue occurs for a high heeled shoe gait. Future research employing the patient population and various types of TCI materials are required to clarify the effects of TCI.

  • PDF

Development of a Model for the Estimation of Knee Joint Moment at MVC (MVC 상태에서의 무릎관절 모멘트 추정을 위한 모델 개발)

  • Nam, Yoon-Su;Lee, Woo-Eun
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.222-230
    • /
    • 2008
  • This paper introduces a method of estimating the knee joint moment developed during MVC. By combining the Hill-type muscle model and analytic results on moment arm and musculotendon length change as a function of hip and knee joint angle, the knee joint moment at a specific knee joint angle during MVC is determined. Many differences between the estimated results and the experimental data are noted. It is believed that these differences originate from inaccurate information on the muscle-tendon parameters. The establishment of exact values for the subject's muscle parameters is almost impossible task. However, sensitivity analysis shows that the tendon slack length is the most critical parameter when applying the Hill-type muscle model. The effect of a change of this parameter on the muscle length force relationship is analyzed in detail.

The effect of hip abductor fatigue on static balance and gait parameters

  • Hwang, Wonjeong;Jang, Jun Ha;Huh, Minjin;Kim, Yeon Ju;Kim, Sang Won;Hong, In Ui;Lee, Mi Young
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.1
    • /
    • pp.34-39
    • /
    • 2016
  • Objective: Hip abductors play a role in providing stability and movement to the lower limbs. The purpose of this study was to examine the effects of hip abductor fatigue on static balance and gait in the general population. Design: One group pre-test post-test design. Methods: Thirteen university students in their twenties volunteered for the study and had underwent a functional assessment. To induce fatigue, the subjects were instructed to raise their dominant lower extremity up against a load of 50% of 1 repetition maximum while producing hip abduction in a side-lying position. Subjects were instructed to maintain an abduction speed of 30 repetitions per minute to induce fatigue. Muscle fatigue was considered to be established when subjects were unable to perform hip abduction three consecutive times along with the metronome. A post-test of balance and gait was performed immediately in order to prevent fatigue recovery. The center of pressure (COP) distance area was measured using the Zebris FDM-S Multifunction Force measuring plate. Gait performance was analyzed using the GAITRite. Results: The COP distance was increased after fatigue was induced. There was a significant increase in the standard deviation of the medio-lateral and antero-posteror distance (p<0.05). Although there was no significant difference in gait parameters, there was a significant decrease in single support time after fatigue was induced (p<0.05). Conclusions: There was an increase in static balance instability and a significant decrease in single support time during gait due to hip abductor muscle fatigue.

The Effect of Applying Various Tools to the Stiffness and Muscle Tone of Hamstring Muscles (다양한 도구의 적용이 뒤넙다리근의 뻣뻣함과 근 긴장도에 미치는 영향)

  • Hwang, Sunghyun;Kim, Taeho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.223-230
    • /
    • 2020
  • Purpose : The purpose of this study was to examine the effects of tools (i., extracorporeal shock wave therapy, massage gun, and foam roller) on range of motion, muscle tone and pain threshold among patients with hamstring stiffness. Methods : Fourteen participants with hamstrings stiffness were recruited. Interventions were performed 6 times, and each session was for 30 seconds using the three tools. The range of motion, muscle tone, and pain threshold were measured. The order of the use of the three tools was randomly determined. The foam roller was made to move from the bottom of the hip crease to the upper part of the back of the hamstring. Additionally, velocity 5 vibration stimulation was performed on the hamstring using a massage gun. Moreover, vibration stimulation was performed on the hamstring with extracorporeal shock wave therapy 5 minutes, 5 Hz, and 1,500 strokes. The flexibility of the posterior thigh muscle was based on maintaining the knee and hip joints in a 90 ° bend in the supine position. The joint angle of the knee was measured, when the knee was actively extended, at the maximum point where the posterior thigh muscle was stretched. The elasticity of the posterior thigh muscle was measured while the subject was prone and in a relaxed state without any force. Measurements were made at the muscle abdominal area of the semitendinosus muscle of the posterior femur, and the area to be measured was marked with a pen. The measurement of the tenderness threshold of the posterior femur was measured using a tenderness meter(Commander Algometer, J-Tech, USA). The force value at the point at which the pressure sensation change to pain was measured after applying vertical pressure to the posterior femur muscle, which was the halfway point between the ischial tuberosity and the popliteal surface of the subject lying on their stomach. Results : The extracorporeal shock wave therapy increased stiffness and, muscle tone, and caused changes in the pain threshold, whereas the other two tools had no effect on these indices. Conclusion : Extracorporeal shock wave therapy has important effects on range of motion and muscle stiffness and can be used in warmup protocols.

Relationship Between the Number of Hip Abduction Performance With Contralateral Adduction in Side-lying and the Lateral Pelvic Shift Distance During One-leg Lifting

  • Do-eun Lee;Jun-hee Kim;Gyeong-tae Gwak;Young-soo Weon;Oh-yun Kwon
    • Physical Therapy Korea
    • /
    • v.30 no.2
    • /
    • pp.152-159
    • /
    • 2023
  • Background: The gluteus medius (Gmed) plays a critical role in maintaining frontal plane stability of the pelvis during functional activities, such as one-leg lifting. Side-lying hip abduction (SHA) has been used as a dynamic test to evaluate Gmed function. However, the abduction force of the lower leg against the floor is not controlled during SHA. Therefore, hip abduction performance with contralateral adduction in the side-lying position (HAPCA) can be proposed as an alternative method to assess performance of hip abduction. If the number of HAPCA is related to the lateral pelvic shift distance, a new quantitative measurement for hip abductor function may be presented. Objects: This study aimed to investigate the relationship between the number of successful HAPCA and the lateral pelvic shift distance during one-leg lifting. Methods: Thirty healthy participants were recruited, and lateral pelvic shift distance was measured during one-leg lifting test using two-dimensional analysis. The number of successful HAPCA was counted when participants touched both target bars at the beat of a metronome. Results: There was a negative correlation between the number of HAPCA and lateral pelvic shift distance during one-leg lifting (r = -0.630, p < 0.05). The number of HAPCA accounted for 39.7% of the variance in the lateral pelvic shift distance during one-leg lifting (F = 18.454, p < 0.001). Conclusion: The number of successful HAPCA is significantly correlated with lateral pelvic shift distance during one-leg lifting. This finding suggests that HAPCA can be proposed as a new measurement for hip abductor performance and more research is needed on its relationship with hip abductor strength.