• Title/Summary/Keyword: Highway tunnel

검색결과 152건 처리시간 0.02초

고속도로 터널 내 화재사고 발생 시 대피행동 지연 요인에 관한 연구 (A Study on the Delayed Factors in Evacuation Behavior in the Case of Fire Accidents in Highway Tunnels)

  • 조재환
    • 대한안전경영과학회지
    • /
    • 제24권4호
    • /
    • pp.143-148
    • /
    • 2022
  • This paper attempted to analyze the correlation between the risk image of the evacuees in the tunnel and the variables that affect the evacuation behavior due to the closed feeling. As to whether there is a difference in the level of recognizing the tunnel risk image according to the distribution of jobs, the null hypothesis was rejected at the significance probability of 0.002, so it can be said that the level of recognition of the tunnel risk image varies depending on the job group. In the distribution difference between gender and tunnel risk image recognition level, the significance probability was 0.012, indicating that the null hypothesis was rejected, indicating that the tunnel risk recognition distribution according to gender was different. As a result of analyzing the distribution difference between the tunnel's closed feeling and the tunnel risk perception level, the significance probability was 0.001, and the null hypothesis was rejected, indicating that there was a difference in the tunnel risk image level.

The impact of EPB pressure on surface settlement and face displacement in intersection of triple tunnels at Mashhad metro

  • Eskandari, Fatemeh;Goharrizi, Kamran Goshtasbi;Hooti, Amir
    • Geomechanics and Engineering
    • /
    • 제15권2호
    • /
    • pp.769-774
    • /
    • 2018
  • The growth of cities requires the construction of new tunnels close to the existing ones. Prediction and control of ground movement around the tunnel are important especially in urban area. The ground respond due to EPB (Earth Pressure Balance) pressure are investigated using the finite element method by ABAQUS in intersection of the triplet tunnels (Line 2, 3 and 4) of Mashhad Urban Railway in Iran. Special attention is paid to the effect of EPB pressure on the tunnel face displacement. The results of the analysis show that in EPB tunneling, surface settlement and face displacement is related to EPB pressure. Moreover, it is found that tunnel construction sequence is a great effect in face displacement value. For this study, this value in Line 4 where is excavated after line 3, is smaller than that line. In addition, the trend of the displacement curves are changed with the depth for all lines where is located in above and below, close to and above the centerline tunnel face for Line 2, 3 and 4, respectively. It is concluded that: (i) the surface settlement decreases with increasing EPB pressure on the tunnel face; (ii) at a constant EPB pressure, the tunnel face displacement values increase with depth. In addition, this is depended on the tunneling sequence; (iii) the trend of the displacement curves change with the depth.

3차원 수치해석을 이용한 RPS 공법의 적용성 평가 (Estimation of RPS Method Using 3-Dimensional Numerical Analysis)

  • 노정민;신은철
    • 한국철도학회논문집
    • /
    • 제9권2호
    • /
    • pp.174-179
    • /
    • 2006
  • Recently, the crossing tunnel has been constructed frequently to connect the separated area by highway and railroad. The construction of crossing tunnel must be progressed while maintaining the existing traffic of the highway as well as railroad. There are many cross funnelling methods such as NTR, TRCM, Messer Shield, Front Jacking, and Pipe Roof Method. The advantages of adopting RPS(Roof Panel Shield) method in crossing tunnel construction with comparing other existing cross funnelling methods are needed a little volume of concrete and easy to change the direction of cutting shoe during the construction of pipe roof, The 3-dimensional numerical analysis of RPS to consider the arching effect was performed for the application in the crossing tunnel under railroad. The earth pressure distribution and settlement were predicted when the RPS method was applied during the excavation for crossing railroad tunnel construction.

고속도로 터널 내 화재발생 시 초기 진압용 화재진압시스템(Water-Bulwark System) 개발 연구 (A Study on the Development of the Water-Bulwark System for Early Suppression in the Event of Fire in Highway Tunnel)

  • 백충현
    • 대한안전경영과학회지
    • /
    • 제24권4호
    • /
    • pp.95-100
    • /
    • 2022
  • In general, fire accidents in tunnels are sufficiently preventable, but the damage is very large. Therefore, the number of highway traffic accidents is high in spring when spring fatigue occurs and the traffic volume for maple travel increases. In particular, when analyzing the cause of death of people killed in fire accidents in tunnels, it is analyzed that most of them are suffocated by smoke. Therefore, in this study, it can be said that it is meaningful to make a social contribution to reduce the number of traffic accident deaths by establishing an efficient fire suppression system for fire accidents in tunnels.

Development of Tunnel Asset Management (TAM) Program

  • Hamed Zamenian;Dae-Hyun (Dan) Koo
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.576-582
    • /
    • 2013
  • Typical highway infrastructure systems include roadway pavement, drainage systems, tunneling, and other hardware components such as guardrails, traffic signs, and lighting. Tunnels in a highway system have provided significant advantages to overcoming various natural challenges including crossing underneath bodies of water or through mountainous areas. While only a few tunnel failure cases have been reported, the failure rate is likely to increase as these assets age and because agencies have not emphasized tunneling asset management. A tunnel system undergoes a deterioration life cycle pattern that is similar to other infrastructure systems. There are very few agencies in the United States implementing comprehensive tunnel asset management programs. While current tunnel asset management programs focus on inspection, maintenance, and operation safety, there is an increasing need for the development of a comprehensive life cycle tunnel asset management program. This paper describes a conceptual framework for a comprehensive tunnel asset management program. The framework consists of three basic phases including a strategic plan, a tactical plan, and an operational plan to provide better information to the decision makers. The strategic plan is a basic long term approach of tunnel asset management. The tactical plan determines specific objectives and the operational plan actually applies asset management objectives in practice. The information includes operational condition, structural condition, efficiency of the system, emergency response, and life cycle cost analysis for tunnel capital improvement project planning.

  • PDF

Factor analysis of subgrade spring stiffness of circular tunnel

  • Xiangyu Guo;Liangjie Wang;Jun Wang;Junji An
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.229-237
    • /
    • 2024
  • This paper studied the subgrade spring stiffness and its influencing factors in the seismic deformation method of circular tunnel. Numerical calculations are performed for 3 influencing factors: stratum stiffness, tunnel diameter and burial depth. The results show that the stratum stiffness and tunnel diameter have great influence on the subgrade spring stiffness. The subgrade spring stiffness increases linearly with stratum stiffness increasement, and decreases with the tunnel diameter increasement. When the burial depth ratio (burial depth/tunnel diameter) exceeds to 5, the subgrade spring stiffness has little sensitivity to the burial depth. Then, a proposed formula of subgrade spring stiffness for the seismic deformation method of circular tunnel is proposed. Meanwhile, the internal force results of the seismic deformation method are larger than that of the dynamic time history method, but the internal force distributions of the two methods are consistent, that is, the structure exhibits elliptical deformation with the largest internal force at the conjugate 45° position of the circular tunnel. Therefore, the seismic deformation method based on the proposed formula can effectively reflect the deformation and internal force characteristics of the tunnel and has good applicability in engineering practice.

고속도로 터널막장 천단부의 붕락구간에 대한 지반보강 (The Ground Reinforcement on Daylight Collapsed Block of Crown Head in the Face of the Tunnel of Highway)

  • 천병식;정덕교;한기식;정진교
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.323-330
    • /
    • 1999
  • Daylight collapse have been occurred by about 5.0m deep at ground surface and collapse of the crown head part of the tunnel have connected to the ground surface during first step of shotcrete work after blasting of upper half section of the tunnel driving at two-way double track tunnel face section on highway construction. This study is for a successful illustration case for the earth improvement method through applying such strengthening methods as cement milk grouting, S.G.R grouting,, steel pipe reinforced multi-step grouting etc. for the purpose of earth strengthening of loosened earth block occurred by tunnel collapse.

  • PDF

고속도로터널의 붕락유형과 원인 분석 (Analysis of Collapse Shape and Cause in the Highway Tunnel)

  • 김낙영;김성환;정형식
    • 한국터널지하공간학회 논문집
    • /
    • 제2권3호
    • /
    • pp.13-24
    • /
    • 2000
  • 본 논문에서는 고속도로터널의 붕락형태와 원인분석, 보강방법에 대하여 다루었다. 고속도로터널의 붕락형태를 분석해 보면 3가지 유형으로 분류된다. 지반풍화로 인해 터널붕락이 지표면까지 함몰된 경우 35%, 불리한 암반절리로 인한 터널내 국부적인 쐐기형 암반블럭 붕락의 경우 50%, 터널굴진방향과 미끄럼면의 교차로 인해 터널내 침하가 발생한 경우 15%의 비율로 조사되었고 터널붕락이 발생된 위치는 입출구 40m 이내와 입출구와 인접한 계곡부에서 85%, 비상주차대과 본선접속부에서 15% 발생되었다. 고속도로터널에서 발생한 붕락을 파괴개념으로 분석하면 활동파괴가 83%이상을 차지하는 것으로 분석되었다.

  • PDF

도로터널에서 종류식 환기 시설의 운전 방안 (An Operation Methed for Longitudinal Flow Ventilation System in a Road Tunnel)

  • 김태형;황인주;홍대희;정종승;정종경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.87-92
    • /
    • 2001
  • In automobile highway tunnels, in order to maintain a suitable environment for drivers and traffic, visibility in the tunnel must be maintained, and the concentrations of poisonous substances including carbon monoxide must be kept at or below allowable levels. For this reason, in long tunnels and tunnels with heavy traffic, ventilation facilities are installed. When the ventilation facilities are run at full capacity, the environment in the tunnel is obviously adequately maintained, but this consumes a great deal of electric power. Consequently, a central problem in highway tunnel ventilation control systems is to keep the pollution concentration at or below the allowable level, and thus provide a safe environment for traffic, while consuming as little electricity as possible. This paper introduces an operation method of longitudinal flow ventilation systems with jet-fan, dust collector and vertical ducts.

  • PDF

개착식 터널에서 파형강판 라이닝의 해석 기법 평가 (Evaluation of Analysis Code of Corrugated Steel Plate Lining in Cut-and-Cover Tunnel)

  • 김정호;김낙영;이용준;이승호;황영철;조철신;정형식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1316-1323
    • /
    • 2005
  • Most tunnel lining material which has been used in the domestic is a concrete. But many problems as the construction period, the cost, and the crack occurrence for the design, construction, and management were happened in the concrete lining. For this reason, many research institutes like the Korea Highway Corporation recognize the necessity of an alternate material development and grow on the interest for that. So in this study, the behaviour characteristics for the application of the Corrugated Steel Plate Lining in cut-and-cover tunnel are evaluated as several conditions for the backfill height, the cutting slope, and the relative density of backfill soil are changed. In addition, through using that conditions, CHBDC(2000, Canadian Highway Bridge Design Code) is evaluated if it could be applied to the design by comparing with the numerical analysis results. As the behaviour characteristics of the Corrugated Steel Plate Lining by CHBDC and the static numerical analysis are analyzed, both the methods show the same linear increases of the compressive stress according to the increase of the backfill height. The CHBDC of the dead load condition has very similar tendency by comparing with the result of the static numerical analysis.

  • PDF