• Title/Summary/Keyword: Highway Traffic Monitoring

Search Result 41, Processing Time 0.024 seconds

A Feasibility Study of Highway Traffic Monitoring using Small Unmanned Aerial Vehicle

  • Ro, Kap-Seong;Oh, Jun-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.54-66
    • /
    • 2007
  • Traffic and emergency monitoring systems are essential constituents of Intelligent Transportation System (ITS) technologies, but the lack of traffic monitoring has become a primary weakness in providing prompt emergency services. Demonstrated in numerous military applications, unmanned aerial vehicles (UAVs) have great potentials as a part of ITS infrastructure for providing quick and real-time aerial video images of large surface area to the ground. Despite of obvious advantages of UAVs for traffic monitoring and many other civil applications, it is rare to encounter success stories of UAVs in civil application including transportation. The objective of this paper is to report the outcomes of research supported by the state agency in US to investigate the feasibility of integrating UAVs into urban highway traffic monitoring as a part of ITS infrastructure. These include current technical and regulatory issues, and possible suggestions for a future UAV system in civil applications.

Statistical Classification of Highway Segments for Improving the Efficiency of Short-term Traffic Count Planning (효율적인 교통량 조사를 계획하기 위한 조사구간의 통계적 특성 분류 연구)

  • Jung, YooSeok;Oh, JuSam
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.109-114
    • /
    • 2016
  • PURPOSES : The demand for extending national highways is increasing, but traffic monitoring is hindered because of resource limitations. Hence, this study classified highway segments into 5 types to improve the efficiency of short-term traffic count planning. METHODS : The traffic volume trends of 880 highway segments were classified through R-squared and linear regression analyses; the steadiness of traffic volume trends was evaluated through coefficient of variance (COV), and the normality of the data were determined through the Shapiro-Wilk W-test. RESULTS : Of the 880 segments, 574 segments had relatively low COV and were classified as type 1 segments, and 123 and 64 segments with increasing and decreasing traffic volume trends were classified as type 2 and type 3 segments, respectively; 80 segments that failed the normality test were classified as type 4, and the remaining 39 were classified as type 5 segments. CONCLUSIONS : A theoretical basis for biennial count planning was established. Biennial count is recommended for types 1~4 because their mean absolute percentage errors (MAPEs) are approximately 10%. For type 5 (MAPE =19.26%), the conventional annual count can be continued. The results of this analysis can reduce the traffic monitoring budget.

Extrapolation of extreme traffic load effects on bridges based on long-term SHM data

  • Xia, Y.X.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.995-1015
    • /
    • 2016
  • In the design and condition assessment of bridges, it is usually necessary to take into consideration the extreme conditions which are not expected to occur within a short time period and thus require an extrapolation from observations of limited duration. Long-term structural health monitoring (SHM) provides a rich database to evaluate the extreme conditions. This paper focuses on the extrapolation of extreme traffic load effects on bridges using long-term monitoring data of structural strain. The suspension Tsing Ma Bridge (TMB), which carries both highway and railway traffic and is instrumented with a long-term SHM system, is taken as a testbed for the present study. Two popular extreme value extrapolation methods: the block maxima approach and the peaks-over-threshold approach, are employed to extrapolate the extreme stresses induced by highway traffic and railway traffic, respectively. Characteristic values of the extreme stresses with a return period of 120 years (the design life of the bridge) obtained by the two methods are compared. It is found that the extrapolated extreme stresses are robust to the extrapolation technique. It may owe to the richness and good quality of the long-term strain data acquired. These characteristic extremes are also compared with the design values and found to be much smaller than the design values, indicating conservative design values of traffic loading and a safe traffic-loading condition of the bridge. The results of this study can be used as a reference for the design and condition assessment of similar bridges carrying heavy traffic, analogous to the TMB.

Highway bridge live loading assessment and load carrying capacity estimation using a health monitoring system

  • Moyo, Pilate;Brownjohn, James Mark William;Omenzetter, Piotr
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.609-626
    • /
    • 2004
  • The Land Transport Authority of Singapore has a continuing program of highway bridge upgrading, to refurbish and strengthen bridges to allow for increasing vehicle traffic and increasing axle loads. One subject of this program has been a short span bridge taking a busy highway across a coastal inlet near a major port facility. Experiment-based structural assessments of the bridge were conducted before and after upgrading works including strengthening. Each assessment exercise comprised two separate components; a strain and acceleration monitoring exercise lasting approximately one month, and a full-scale dynamic test carried out in a single day. This paper reports the application of extreme value statistics to estimate bridge live loads using strain measurements.

Ambient Fine and Ultrafine Particle Measurements and Their Correlations with Particulate PAHs at an Elementary School Near a Highway

  • Song, Sang-Hwan;Paek, Do-Myung;Lee, Young-Mee;Lee, Chul-Woo;Park, Chung-Hee;Yu, Seung-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.96-103
    • /
    • 2012
  • Ambient particulate matter (PM) and particle-bound polycyclic aromatic hydrocarbon (PAH) concentrations were measured continuously for 70 days at a Korean elementary school located near a highway. The $PM_{10}$, $PM_{2.5}$, and $PM_1$ values were measured with a light-scattering, multi-channel, aerosol spectrometer (Grimm, Model 1.107). The number concentrations of the particles were measured using a scanning mobility particle sizer and counter (SMPS+C) which counted particles from 11.1 to 1083.3 nm classified in 44 channels. Particle-bound PAHs were measured with a direct reading, photoelectric aerosol sensor. The daily $NO_2$, $SO_2$, and CO concentrations were obtained from a national air-monitoring station located near the school. The average concentrations of $PM_{10}$, $PM_{2.5}$, and $PM_1$ were 75.3, 59.3, and $52.1{\mu}g/m^3$, respectively. The average number concentration of the ultrafine particles (UFPs) was $46,307/cm^3$, and the averaged particle-bound PAHs concentration was $17.9ng/cm^3$ during the study period. The ambient UFP variation was strongly associated with traffic intensity, particularly peak concentrations during the traffic rush hours. Particles <100 nm corresponded to traffic-related pollutants, including PAHs. Additional longterm monitoring of ambient UFPs and high-resolution traffic measurements should be carried out in future studies. In addition, transient variations in the ambient particle concentration should be taken into consideration in epidemiology studies in order to examine the short-term health effects of urban UFPs.

Performance Evaluation of Interlocking Block Pavement for Low Speed Highway (인터로킹 블록포장의 저속도로 적용성 평가)

  • Lin, Wuguang;Ryu, SungWoo;Lee, ByeongTae;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • PURPOSES : This study aims to evaluate the performance of interlocking block pavement system for low speed highway. METHODS : Through on-site monitoring, environmental impact assessment of interlocking block pavement such as heat island reduction, traffic safety, noise pollution were evaluated as compared with asphalt pavement. Also the pavement condition and roughness were evaluated according to performance period. RESULTS : Surface temperature of interlocking block pavement was about 7 degree lower than asphalt pavement in midsummer. Compared to asphalt pavement, vehicle speed reduction effect of interlocking block pavement was about 2kph. For low speed driving, the noise pollution was measured at a similar level for both asphalt and interlocking block pavement. After 42month service period, the breakage of block was only 0.24% for the whole surveyed area. IRI of interlock block pavement was estimated within the range of 5~8m/km. CONCLUSIONS : Depending on the performance monitoring results such as heat island reduction, providing traffic safety and keeping a good pavement condition for a long service period, it assures that interlocking block pavement was applicable for low speed road.

Estimation of Risk from Air Pollution in the Underground Highway Proposed to Construct in Seoul, Korea

  • Lee, Ki-Young;Yukio-Yanagisawa
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.E
    • /
    • pp.397-400
    • /
    • 1993
  • The possible air pollution problems in a proposed underground highway are discussed using carbon monoxide (CO) as an indicator. Carbon monoxide concentrations in the underground highway depend on several factors, including the size of tunnel, the number of automobiles, the CO emission rate, and the tunnel ventilation rate. Using the estimated values, CO concentrations in the underground highway can be predicted. Without proper ventilation system, CO concentration in the underground highway can be dangerous level. However, the cost of operating the mandatory mechanical ventilation system may be tremendouslyy high and may be technically unrealistic to implement. If the underground highway is constructed with proper ventilation system, a continuous air pollution monitoring system with alarming function must be installed to alert personnel of serious air pollution built up in the underground highway. Traffic must be restricted, whenever the inside air pollution levels exceed agreed values. Short distances between evacuation exits are necessary for emergency situations or malfunction of ventilation system.

Noise level Assessment Exposed to Cashiers in the Highway Tollbooth (고속도로 톨게이트 요금수납원 소음노출 수준 평가)

  • Kim, Kab Bae;Chung, Eun-Kyo;Kim, Jong-Kyu;Park, Hae Dong;Kang, Joon Hyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.729-735
    • /
    • 2016
  • According to the survey for working environment of the cashiers in highway tollbooths, workers replied that noise was the most harmful substances next to air pollutant in the tollbooth. Researches on the noise levels exposed to cashiers in the highway tollbooth scarcely have been performed. Therefore, the aim of this study was to acquire baseline data to prevent health impairments of the cashiers by evaluating noise level exposed to them. Noise dosimeters were used for monitoring workers' noise exposure level in the tollbooths at 8 different highway tollgates. The noise levels of tollbooths did not exceed noise exposure limit of the ministry of labor, 90 dB(A). The average TWA inside of the tollbooths was 55.4 dB(A) and the average TWA outside of tollbooths was 58.3 dB(A). The average TWA outside of tollbooths was slightly higher than that of inside of tollbooths. However, the significance probability(p-value) was 0.255 which means statistically not significant. The noise levels inside and outside of tollbooth were statistically significant to both mean traffic volume per day and traffic volume of passenger car.

Analysis of Traffic Accident Reduction Effects considering Monitoring Direction of Traffic Camera (교통단속카메라 전·후방을 고려한 사고 저감효과 분석 -울산시 북구를 대상으로-)

  • Won, Jin-Young;Shin, Jin-Dong;Pak, So-Yeon;Lee, Jong-Seol
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.127-135
    • /
    • 2018
  • PURPOSES : Traffic cameras have been installed to reduce traffic accidents. The effectiveness of traffic cameras has been proved by dozens of studies, but recently questions over its effectiveness have been raised by a series of studies. In this study, the effectiveness of traffic cameras was analyzed with a focus on different road environments. METHODS : The effectiveness of the traffic cameras was analyzed by extracting the occurence frequency before and after camera installation. The effect of reduction was analyzed comprehensively considering the installation position, monitoring direction, and surrounding environment of traffic cameras. RESULTS : The result of this study is as follows. First, the installation of cameras in an area with relatively low accidental traffic was more effective. Secondly, the effect of camera installation on car-to-pedestrian collisions was better than that of car-to-car collisions. Thirdly, accidents tended to occur more frequently when cameras were installed in front of the accident-prone owing to the negative spill-over effect. CONCLUSIONS : The result can be used to guide placement of traffic cameras. Moreover, the installation of cameras with consideration of the road environment is expected to contribute to a reduction in traffic fatalities.

A Method for Extracting Vehicle Speed Using Aerial Images (항공영상을 이용한 차량속도 추출 방법)

  • Hwang, Jung-Rae;Kang, Hye-Young;Choi, Hyun-Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.11-19
    • /
    • 2012
  • Due to existing infrastructure to collect traffic information was constructed to expressway and national highway, we cannot precisely know traffic situation for their surrounding area. Therefore, it is difficult to provide reliable traffic information to users using navigation and smartphone. In this research, we collected aerial images by using unmanned airship capable of wide-area monitoring and proposed a method extracting vehicle speed from the collected data. And, we performed experiments to verify the accuracy of extracted vehicle speed. Our method proposed in this research can be used to extract a new approach of traffic information according to increased demand of traffic monitoring. We expect that our method will become a new research trend in traffic information application.