• Title/Summary/Keyword: Highway Bridge

Search Result 546, Processing Time 0.026 seconds

The Analysis of User Cost according to Timing of National Highway Pavement Maintenance-Focusing on the Maesang Bidge Section in Korea

  • Kim, Yunsik;Lee, Minjae
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.606-607
    • /
    • 2015
  • The traffic volume on the road shows various trends reflecting regional characteristics for monthly and hourly, and economic loss affecting users varies according to the selected period for the maintenance of road pavements. Therefore, in this study, the user cost (or delay cost) for monthly and hourly on the work zone near the Maesang Bridge Section on Poseung-Gu, Pyeongtaek-si, Gyeonggi-do was calculated using the time series models and VISSIM, and based on the result, the effect of user cost reduction according to the selection of best maintenance period was examined. The analysis result showed that the month of the lowest user cost occurred due to the maintenance of target section was January (10,293,258 KRW/Day×1km) and the month of the greatest user cost occurred was November (13,337,495 KRW/Day×1km).

  • PDF

INCENTIVE/DISINCENTIVE PROJECT SUCCESS FACTORS DURING MACARTHUR MAZE I-580 BRIDGE SPAN REPLACEMENT

  • Jae-Ho Pyeon;Marc Zomoradi
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.328-331
    • /
    • 2013
  • Incentive/Disincentive (I/D) contracting experiences in many states have been evaluated in terms of time and cost performance and substantial project time savings were found in many project cases. However, there is little understanding on individual project success factors for I/D projects during construction. This paper explores the significance of I/D clause in the success of the MacArthur Maze reconstruction project and summarizes a list of group causes that explains and elaborates on the detailed factors. The methods used for carrying out this study started with a search of online media and news reports and contract documents were also obtained from Caltrans. After review of the preliminary information, Interviews were performed with the Caltrans Resident Engineer and the contractor's project manager who were in charge of the MacArthur Maze reconstruction. In conclusion, the evaluation of their responses hinted at six significant cause groups responsible for the project's success. These groups can be listed as: 1) Motivation, 2) Policy, 3) Teamwork, 4) Communication, 5) Expectation, and 6) Resource Management.

  • PDF

Analysis of BWIM Signal Variation Due to Different Vehicle Travelling Conditions Using Field Measurement and Numerical Analysis (수치해석 및 현장계측을 통한 차량주행조건에 따른 BWIM 신호 변화 분석)

  • Lee, Jung-Whee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.79-85
    • /
    • 2011
  • Bridge Weigh-in-Motion(BWIM) system calculates a travelling vehicle's weight without interruption of traffic flow by analyzing the signals that are acquired from various sensors installed in the bridge. BWIM system or data accumulated from the BWIM system can be utilized to development of updated live load model for highway bridge design, fatigue load model for estimation of remaining life of bridges, etc. Field test with moving trucks including various load cases should be performed to guarantee successful development of precise BWIM system. In this paper, a numerical simulation technique is adopted as an alternative or supplement to the vehicle traveling test that is indispensible but expensive in time and budget. The constructed numerical model is validated by comparison experimentally measured signal with numerically generated signal. Also vehicles with various dynamic characteristics and travelling conditions are considered in numerical simulation to investigate the variation of bridge responses. Considered parameters in the numerical study are vehicle velocity, natural frequency of the vehicle, height of entry bump, and lateral position of the vehicle. By analyzing the results, it is revealed that the lateral position and natural frequency of the vehicle should be considered to increase precision of developing BWIM system. Since generation of vehicle travelling signal by the numerical simulation technique costs much less than field test, a large number of test parameters can effectively be considered to validate the developed BWIM algorithm. Also, when artificial neural network technique is applied, voluminous data set required for training and testing of the neural network can be prepared by numerical generation. Consequently, proposed numerical simulation technique may contribute to improve precision and performance of BWIM systems.

Performance Evaluation of Encased-Concrete Bridge Plate(Deep Corrugated Steel Plate) Member (콘크리트 충전 브릿지 플레이트(대골형 파형강판) 부재의 성능평가)

  • Sim, Jong-Sung;Park, Cheol-Woo;Kim, Tae-Soo;Lee, Hyoung-Ho;Kang, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.297-303
    • /
    • 2010
  • The current encased-concrete deep corrugated steel plate has an arch type plate structure, which is a compressive strength-dominant structure that has a small moment due to its arch shape. Therefore, it increases the strength against compression by adding reinforcements to make concrete-filling spaces for increasing the compressive strength and forming cross sections that contain reinforced concrete. In this study, the safety factor of the new-concept encased-concrete bridge plate member was evaluated by comparing the compressive strength obtained from the compressive tests, flexural tests and the design compressive strength determined by using the Canadian Highway Bridge Design Code (CHBDC, 2003), which is a design standard for the encased-concrete bridge plate structures. The results of the safety factor evaluation using the design compressive strength and the test results showed that the safety factor was well above the appropriate value 2.0, which could be adjudged very conservative. If the safety factor based on this study results is considered and applied to the design, economical construction will be possible due to the reduced cross section and construction cost.

The Methodology of Determination of the Allotment Ratio in Maintenance Cost on the Multi-Purpose Steel Bridge (복합이용 강교량의 유지관리비 분담비율 결정을 위한 방법)

  • Kim, Kyoung Nam;Lee, Seong Haeng;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.747-758
    • /
    • 2006
  • With the growth of economy, the esthetic values of bridges become significant points in the decision process of a type of new bridges. So, it is common that a long-span bridge or a multi-purpose bridge are selected as the type of new bridges. Also, the economic growth derives increase in traffic and then the increased traffic derives multi purpose bridges from the decision process of bridge types. In the multi-purpose bridges with private fund, the construction cost is simply alloted to several organizations according to the percentage of participation and usage. But the allotment of the maintenance cost is not simple. Because the loads and safety factors in design are different between the criterion of design of highway bridges and that of railway bridges. In this study, we verify the possible problems in case of allotment method of maintenance cost in foreign examples as well as domestic example. As one of the method of determination of allotment ratio in maintenance cost, the method based on the stress of structural analysis is presented and it can be an example in the similar problem later.

Optimal Toll Estimate of a Toll Road Using Fuzzy Approximate Reasoning - Forced on the Geoga Bridge - (퍼지근사추론을 이용한 유료도로의 적정요금 산정 - 거가대교를 중심으로 -)

  • Ha Man-Box;Kim Kyung-Whan;Kim Yeong
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.63-76
    • /
    • 2006
  • For a private toll road project, deciding optimal toll is an important element of economic analysis for the project and a challengeable work. In this study, the optimal toll of a private toll bridge, Geoga Bridge which connects Geoje Island of Gyeongnam Province and Gaduk Island of Busan was estimated using Stated Preference (SP) data. The SP data were collected by interviewing the passenger car drivers travelling on the National Road 14. They are latent users of the bridge. A fuzzy approximate reasoning model to estimate the optimal toll was built using the SP data. For the input variable of the model, the saved travel time and toll level were employed and the diversion rate to the bridge was employed for the output variable. The diversion rates for each toll level and saved travel time were estimated and the toll level which had maximized the toll revenue was decided as optimal toll. The optimal toll was tested by comparing with the average pay rate of passenger car drivers. Since the optimal toll for passenger cars at one hour saving, the 6,250 won is about 50 % of the average pay rate of passenger car divers, the toll was evaluated not to be high. The technique employed in this study may be used for the estimation of the optimal tolls for other kinds of vehicles.

  • PDF

Quasi-Static Test for Seismic Performance of Circular Hollow RC Bridge Pier (원형 중공 콘크리트 교각의 내진성능에 대한 준정적 실험)

  • 정영수;한기훈;이강균;이대형
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.41-54
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers, circular hollow columns are widely used in Korean highway bridges. Since the occurrence of 1995 Kobe earthquake, there have been much concerns about seismic design for various infrastructures, inclusive of bridge structures. It is, however, understood that there are not much research works for nonlinear behavior of circular hollow columns subjected to eqrthquake motions. The objective of this experimental research is to investigate nonlinear behavior of circular hollow reinforced concrete bridge piers under the quasi-static cyclic load, and then to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. Particularly for this test, constant 10 cyclic loads have been repeatedly actuated to investigate the magnitude of strength degradation for the displacement ductility factor. Important test parameters are seismic design, confinement steel ratio, axial force and load pattern. It is observed from quasi-static tests for 7 bridge piers that the seismically designed columns and the retrofitted columns show better performance than the nonseismically designed colums, i.e. about 20% higher for energy dissipation capacity and about 70% higher for curvatures.

  • PDF

A Study on Performance of Steel Monocell Expansion Joints (강재형 모노셀 신축이음장치 성능 연구)

  • Kim, Yong-Hoon;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.502-509
    • /
    • 2019
  • Studies have been made on performance evaluation of expansion joint systems for an ordinary highway or road bridge. However little study has been made for runway connection bridges at airports. A study on performance evaluated from computer code analysis and shrinkage, extension, and compression repetition tests based on KS F 4425 is conducted to a newly developed expansion joint system which has been installed in a runway connection bridge at Incheon Airport Extension 2 Construction Site. The MIDAS computer code is used to analyze the performance before the manufacture of the mock-up of expansion joint system on the basis of design requirements. Tests based on the KS F 4425 of 2001 year-version are conducted for the mock-up. Domestic codes and standards to validate the performance of the expansion joint system in a connection bridge have been developed for a vehicle. However the expansion joint system tested in this study is installed in a runway connection bridge for an aircraft. Conservatively the heaviest one among airplanes departing and landing at Incheon Airport is assumed level-F $468.4kN/m^2$ and adopted for the tests and analyses in this study. KS F 4425 method is selected for the shrinkage, extension, and compression repetition tests. No remarkable problem was observed for the 2,500-cycle shrinkage and extension and two million-cycle repeatition load tests. The results of this study are expected to contribute to establishment of code and standard for the performance validation of an expansion joint system installed in a runway connection bridge for an aircraft by providing performance test results and computer analysis results based on finite element methods.

Safety Evaluation of Concrete Bridges for Passage of Crane Vehicle Exceeding Weight Limit (제한 중량을 초과하는 기중기 차량 통행에 대한 콘크리트 교량의 안전성 평가)

  • Lee, Sung-Jae;Yu, Sang Seon;Park, Younghwan;Paik, Inyeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.92-101
    • /
    • 2020
  • It is necessary to develop a rational method for evaluating the safety of bridges for the passage of inseparable crane vehicles exceeding the limit weight. In this study, the same method applied to the development of the recently introduced reliability-based highway bridge design code - limit state design method is applied to the calibration of the live load factor for the crane vehicle. Structural analysis was performed on the concrete bridge and the required strengths of the previous design code, the current design code and AASHTO LRFD were compared. When comparing the unfactored live load effect, the live load of the crane was greater than that of the current and previous design code. When comparing the required strength by applying the calibrated live load factor, the previous design code demands the largest strength and the current design code and the crane live load effect yields similar value. The results of safety evaluation of the actual bridges on the candidate route for the crane passage secured the same reliability as the target reliability index required by the design code and the strength of the cross section of the actual bridge is calculated greater than the required strength for the passage of the crane, which confirms the safety for the passage of the crane.

Mechanical properties of carbon fiber sheet and carbon fiber strand sheet based on carbon fibers for the reinforcement of highway bridge RC slabs (도로교 RC 상판 보강을 위한 탄소섬유 기초 carbon fiber sheet와 carbon fiber strand sheet의 역학특성)

  • Won, Chan Ho;Abe, Tadashi;Ahn, Tae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.290-293
    • /
    • 2015
  • Recently, a lot of interest has been shown in structural maintenance managements of civil infrastructures. Many researchers have been conducted on various maintenance techniques and repair materials. Among other fiber materials the carbon fiber materials are especially focused on maintenance management of Highway Bridges. Extensive work has been done on Carbon Fiber Sheet (CFS). Nevertheless, Carbon Fiber Strand Sheet (CFSS) is a newly developed material, on which limited work has been done until now. Therefore, in this study bonding the CFSS to RC slab specimen and fatigue resistance evaluation has been conducted. The results demonstrated an increase of 25.3 times more reinforcement of RC slab compared to non-reinforced RC slab. Moreover, compared to CFS-bonded RC slab, The CFSS-bonded RC slab showed 1.2 times greater reinforcement.