• Title/Summary/Keyword: Highly efficient mechanical process

Search Result 42, Processing Time 0.031 seconds

Highly Efficient Mechanical Separation Process for the Recycling of Waste Jelly-Filled Communication Cables (고효율 기계적 박리기술을 이용한 폐 젤리충진 통신케이블 재활용 연구)

  • Lee, Sooyoung;Uhm, Sunghyun;Seo, Minhye;Lee, Minseok;Cho, Sungsu
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.37-42
    • /
    • 2016
  • Highly efficient and environmentally friendly mechanical process was developed for the higher recovery rate and productivity in the recycling of waste jelly-filled communication cables. Only the simplest mechanical method was designed and built for a continuous process, further proved experimentally along with the addition of several parts such as brush-type rollers and scrappers. In this process, the recovery rate and productivity were 98% and 55 Kg/hr respectively. This process is thought to be simple but highly advanced method for the commercialization of green process.

Development of a Knowledge-Based Information Management System for Plant Maintenance (설비 관리를 위한 지식기반 정보관리 시스템의 개발)

  • Park, Young-Jae;Lee, Sang-Min;Yim, Hyung-Sang;Choi, Jae-Boong;Kim, Young-Jin;Roh, Eun-Chul;Lee, Byung-Ine
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1933-1940
    • /
    • 2003
  • Recently, the importance of plant maintenance(PM) was highly raised to provide efficient plant operation which highly affects the productivity. For this reason, a number of engineering methodologies, such as risk-based inspection(RBI), fitness for service guidelines(FFS), plant lifecycle management(PLM), have been applied to improve the plant operation efficiency. Also, a network-based business operation system, which is called ERP(Enterprise Resource Planning), has been introduced in the field of plant maintenance. However, there was no attempt to connect engineering methodologies to the ERP PM system. In this paper, a knowledge-based information system for the plant operation of steel making company has been proposed. This system which is named as K-VRS(Knowledge-based Virtual Reality System), provides a connection between ERP plant maintenance module and knowledge-based engineering methodologies, and thus, enables network-based highly effective plant maintenance process. The developed system is expected to play a great role for more efficient and safer plant maintenance.

Roll Forming Analysis for High Strength Steel Bumper Process (고장력강 범퍼 빔의 롤 포밍 공정)

  • Kim, Dong Hong;Jung, Dong Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.797-801
    • /
    • 2013
  • Today's automotive industry is evolving toward low-emissions or zero-emissions high-efficiency vehicles. Highly efficient power sources are required, as well as high strength steels for various parts to increase safety. In this study, we investigated the roll-forming process for the development of high strength, lightweight steel bumper beams. The roll-forming process was analyzed using the software package Shape-RF in combination with a rigid-plastic finite element method model. An optimal roll-forming process based on roll-pass was obtained using finite element method simulations.

Numerical Analysis on Mixing in a Microchannel with Inhomogeneous Surface Charge (불균일 표면전하를 지닌 미소채널 내에서의 혼합에 관한 수치 해석적 연구)

  • Song, Kyung-Suk;Lee, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1004-1009
    • /
    • 2003
  • Electroosmotic flow induced by an applied electrostatic potential field in microchannel is analyzed in this study. The electroosmotic flow is an alternative to pressure driven flow in microchannels, but the usage has been limited to the simple cases. In this study, We analyze electroosmotic flow driven by inhomogeneous surface charge on the channel wall. The surface charge varies along a direction perpendicular to the electric field in order to generate the electroosmotic flow. A numerical results substantiate the highly efficient mixing performance. It is highly the beneficial to fabrication process since only straight microchannel rather than complex geometry is enough to yield efficient mixing.

  • PDF

Development of an implicit filling algorithm (암시적 방법을 이용한 충전 알고리즘의 개발)

  • Im, Ik-Tae;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.104-112
    • /
    • 1998
  • The mold filling process has been a central issue in the development of numerical methods to solve the casting processes. A mold filling which is inherently transient free surface fluid flow, is important because the quality of casting highly depends on such phenomenon, Most of the existing numerical schemes to solve mold filling process have severe limitations in time step restrictions or Courant criteria since explicit time integration is used. Therefore, a large computation time is required to analyze casting processes. In this study, the well known SOLA-VOF method has been modified implicitly to simulate the mold filling process. Solutions to example filling problems show that the proposed method is more efficient in computation time than the original SOLA -VOF method.

Development of a Knowledge-based Information Management System for Plant Maintenance (설비 관리를 위한 지식기반 정보관리 시스템의 개발)

  • Yim, Hyung-Sang;Park, Young-Jae;Lee, Sang-Min;Choi, Jae-Boong;Kim, Young-Jin;Roh, Eun-Chul;Lee, Byung-Ine
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.149-156
    • /
    • 2003
  • Recently, the importance of plant maintenance(PM) was highly raised to provide efficient plant operation which highly affects the productivity. For this reason, a number of engineering methodologies, such as riskbased inspection(RBI), fitness for service guidelines(FFS), plant lifecycle management(PLM), have been applied to improve the plant operation efficiency. Also, a network-based business operation system, which is called ERP(Enterprise Resource Planning), has been introduced in the field of plant maintenance. However, there was no attempt to connect engineering methodologies to the ERP PM system. In this paper, a knowledge-based information system for the plant operation of steel making company has been proposed. This system, which is named as K-VRS(Knowledge-based Virtual Reality System), provides a connection between ERP plant maintenance module and knowledge-based engineering methodologies, and thus, enables network-based highly effective plant maintenance process. The developed system is expected to play a great role for more efficient and safer plant maintenance.

  • PDF

Highly Precise and Efficient Drilling of Carbon Fiber Reinforced Plastics (탄소섬유강화 플라스틱의 고정도, 고능률 드릴링 가공)

  • 박규열;최진호;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3175-3184
    • /
    • 1994
  • The high strength and wear-resistant metal bonded diamond wheel was applied to the drilling process of carbon fiber reinforced plastics (CFRP), The helical-feed drilling method was use for the first time to overcome the limit of drilling depth of the conventional drilling process and to improve the dressing of the wheel. The helical-feed drilling method was found effective at high cutting speed without the limit of drilling depth.

Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(II) - Effect of Process Variables on The Mechanical Properties of Composites - (난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(II) - 공정변수가 복합재의 기계적 성질에 미치는 영향 -)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.58-65
    • /
    • 1997
  • This research was carried out to evaluate the effect of process variables on mechanical properties of the wood fiber-thermoplastic fiber composites by turbulent air mixing method. The turbulent air mixer used in this experiment was specially designed in order to mix wood fiber and thermoplastic polypropylene or nylon 6 fiber, and was highly efficient in the mixing of relatively short plastic fiber and wood fiber in a short time without any trouble. The adequate hot - pressing temperature and time in our experimental condition were $190^{\circ}C$ and 9 minutes in 90% wood fiber - 10% polypropylene fiber composite and $220^{\circ}C$ and 9 minutes in 90% wood fiber 10% nylon 6 fiber composite. Both in the wood fiber - polypropylene fiber composite and wood fiber- nylon 6 fiber composite, the mechanical properties improved with the increase of density. Statistically, the density of composite appeared to function as the most significant factor in mechanical properties. Within the 5~15% composition ratios of polypropylene or nylon 6 fiber to wood fiber, the composition ratio showed no significant effect on the mechanical properties. Bending and tensile strength of composite, however, slightly increased with the increase of synthetic fiber content. The increase of mat moisture content showed no significant improvement of mechanical properties both in wood fiber - polypropylene fiber composite and wood fiber nylon 6 fiber composite. Wood fiber - nylon 6 fiber composite was superior in th mechanical strength to wood fiber-polypropylene fiber composite, which may be related to higher melt flow index of nylon 6 fiber(22g/10min) than of polypropylene fiber(4.3g/10min).

  • PDF

Chip breaker mechanism with double step grooves (이단홈형 칩브레이커의 메카니즘)

  • 이우영;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.1005-1013
    • /
    • 1987
  • For the factory automation and unmanned machine operation, it is very important to manufacture highly reliable and efficient chip breakers for optimal chip control. In this research, using the CALMA CAD/CAM SYSTEM, the manufacturing process of 3-dimensional chip breakers is established. Using the results of the cutting test of the selected chip breakers with double-step grooves, the chip breaking mechanism is schematically analysed. An expression for the chip breaking relation is derived which considers chip material behavior following LUDWIK's stress-strain curve, chip breaking criterion and the shape of chip breakers. This contains the thickness of chip, the radius of chip curl, and the mechanical properties of chip materials. It is found that the expression agrees very closely with the experimental results.

Numerical Analysis on Mixing in T type Microchannel using Throttling (스로틀링을 이용한 T형 미소 채널에서의 혼합에 관한 수치 해석적 연구)

  • Jang, Ji-Hwan;Lee, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1516-1521
    • /
    • 2004
  • Mixing in Y-channel micro mixer is analyzed through computational fluid dynamics. In the case of passive mixing, we investigate the effect of geometric parameters on the mixing efficiency, such as shape of throttling geometry and angle between two inlets. Mixing performance improves as two fluids join not just horizontally but both vertically and horizontally, and it also improves when channel follows throttling shapes. A numerical results substantiate the highly efficient mixing performance. It is highly beneficial to fabrication process since the proposed throttling geometry is simple, but allows high mixing ratio.

  • PDF