• 제목/요약/키워드: Highland agriculture

Search Result 428, Processing Time 0.035 seconds

Soil Chemical Properties of Reclaimed Tide Lands Under Government Management in Korea: Results of 4-years monitoring (한국의 국가관리 간척지 토양의 화학성 변동: 4년 모니터링 결과)

  • Ryu, Jin-Hee;Lee, Su-Hwan;Oh, Yang-Yeol;Lee, Jeong-Tae
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.273-280
    • /
    • 2019
  • BACKGROUND: The reclaimed lands for agricultural use managed by the Korean government is consisted of 17,145 hectares of lands under construction and 13,384 hectares of completed lands. In order to utilize these reclaimed lands as competitive agricultural complexes, the government is preparing to develop comprehensive development plans for multiple purposes. For rational land-use planning and soil management, information of the soil chemical properties is necessary. METHODS AND RESULTS: From 2013 to 2016, soil samples were collected from 85 representative sampling sites of the reclaimed lands and analyzed for soil chemical properties including electric conductivity (EC), pH, soil organic matter (SOM), and nutrients. The annual mean soil EC ranged from 5.1 to 8.3 dS m-1 and have continued to decrease over the years (estimation equation with EC as dependent and year as independent variable was y =0.0736x2 - 1.4985x + 9.8305, R2 = 0.9753). The pH ranged from 7.3 to 7.6, which was higher than the optimum range (5.5~7.0) for agricultural soils. Soil organic matter (8 to 11 g kg-1) was lower level than the optimum range (20~30 kg-1). Available silicate (Av.SiO2) ranged from 169 to 229 mg kg-1, which was close to the minimum content (≥157 mg kg-1) for rice paddy field. Available phosphate (Av.P2O5) content (24~39 mg kg-1) was lower than the optimum range (80~120 mg kg-1) for rice paddy field. CONCLUSION: For efficient agricultural use of reclaimed lands under government management, our results suggest that the application of organic matter and supplying deficient nutrients as well as desalinization is required.

Water Quality of Streams and Agricultural Wells Related to Different Agricultural Practices in Small Catchments of the Han River Basin (농업형태가 다른 한강 상하류 소유역의 하천수 및 농업용 지하수 수질)

  • Jung, Yeong-Sang;Yang, Jae-E;Joo, Young-Kyu;Lee, Joo-Young;Park, Yong-Seong;Choi, Mun-Heon;Choi, Seung-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.199-205
    • /
    • 1997
  • Water quality of streams and ground water from areas of different agricultural practices in the small catchments of the Han River basin was investigated. Water samples were collected from upper, middle and lower reaches of the Han River Basin where three types of agricultural management have been practiced : (1) highland agriculture and livestocks in Daegwanryung area, (2) typical upland and paddy farmings in Dunnae (Jucheon River) and Chuncheon (Soyang River) areas, and (3) intensive farming in the plastic film house in Guri area (Wangsuk stream). Water quality was monitored for EC, pH, COD, TSS, N, rations and anions. Concentrations of N, especially nitrate, and phosphorus in both stream and ground water exceeded the standard water quality criteria in many cases, but those of heavy metals were non-detectable or trace in most cases, except for Wangsuk stream where a high level was detected in a specific sampling time. Chemical criteria such as pH, EC and COD of the stream were suitable for irrigation purpose, but nitrate concentrations in ground water used in the intensive plastic film house were high enough to require a special management consideration. A model on the irrigation water quality incorporating EC and nitrate concentrations was suggested in view of fertilizer management and environmental quality.

  • PDF

Granulation of Natural Zeolite Powder Using Portland Cement (포트랜드 시멘트를 이용한 천연 지올라이트 미분의 입단화)

  • Kim, Su-Jung;Zhang, Yong-Seon;Ok, Yong-Sik;Oh, Sang-Eun;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.259-266
    • /
    • 2007
  • Enormous amount of zeolite by-products as a fine powder have been produced while manufacturing commercial zeolite products. Granulation of the zeolite by-products is necessary in order for them to be recycled as soil conditioners or absorbent for various environmental contaminants due to the limitations inherent from their physical properties. We granulated the zeolite powders using Portland cement as a cementing agent and characterized the physical and chemical properties of the granulated zeolite product. The experimental natural zeolite had a Si/Al ratio of 4.8 and CEC of 68.1 $cmol_c\;kg^{-1}$. The X-ray diffractometry (XRD) revealed that clinoptilolite and mordenite were the major minerals of natural zeolite. Smectite, feldspar and quartz also existed as secondary minerals. Optimum conditions of granulated zeolite production occurred when natural zeolite was mixed with Portland cement at a 4:1 ratio and granulated using the extruder, left to harden for one month at $25^{\circ}C$ and treated at $400^{\circ}C$ for 3 hours. The wide spectra of XRD revealed that the granulated zeolite had amorphous oxide minerals. The alkali- or thermal-treated natural zeolite exhibited pH-dependent charge properties. The major minerals of the granulated zeolite were clinoptilolite, mordenite and tobermorite. The buffering capacity and charge density of the granulated zeolite were greater than those of natural zeolite.

Mobilization Characteristics of Indigenous Phosphate by Oxalic Acid and Dilution Factors in Upland Soils (밭토양에서 옥살릭산과 희석요인에 의한 자체 인산의 이동 특성)

  • Chung, Doug-Young;Lee, Kyo-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.46-51
    • /
    • 2006
  • Phosphorus accumulation in fertilized soils becomes serious problem for agriculture and the environment. In this investigation, we conducted a laboratory scale investigation to find the most desirable displacement methods of the adsorbed phosphate onto the soil particle surfaces. Soil samples which contained high amount of phosphate were collected at two different depths (0-10 cm and 10-20 cm) from four locations at the moderate highland located in Nonsan, Chungnam. To observe the mobilization of solid-phase phosphate, soil samples were equilibrated with oxalic acid solutions ranging from $10^{-5}$ to $10^{-1}cmol\;L^{-1}$ with the dilution factors of 1:1, 1:2.5, 1:5, 1:10, and 1:20. The mineralized P sharply increased as the concentration of oxalic acid was greater than $5{\times}10^{-4}cmol\;L^{-1}$ under dilution factors of 1:1, 1:2.5, and 1:5. The breaking concentration of oxalic acid was lowered to $10^{-4}cmol\;L^{-1}$ and $5{\times}10^{-5}cmol\;L^{-1}$ for dilution factors of 1:10 and 1:20, respectively. The curve fit obtained from the graph can be described by exponential growth when the dilution factors were 1:1, 1:2.5, and 1:5 while the sigmoidal shape for 1:10 and 1:20, showing the mineralization of P were significantly dependent on the dilution factor.

Selection of Ground Covering Plant Applicable to Aronia Production in the Highland Rolling Plains (고랭지 경사밭 아로니아 재배시 적정 피복식물 선발)

  • Suh, Jong Taek;Kim, Ki Deog;Lee, Jong Nam;Hong, Su Young;Kim, Su Jeong;Nam, Jeong Hoan;Sohn, Hwang Bae
    • Korean Journal of Plant Resources
    • /
    • v.32 no.4
    • /
    • pp.338-343
    • /
    • 2019
  • This study was conducted to nominate optimal ground cover plants eventually enhancing Aronia production in the highland rolling plains. Total number of 17 weed species were observed in Aronia field when no cover plant was applied. Meanwhile, 12, 14, 15 and 16 weed species were observed when kentucky bluegrass, white clover, rattail fescue and ground ivy were used, respectively. Untreated native weed species were 73.6 cm tall before cut, and kentucky bluegrass, white clover, Rattail fescue and ground ivy were 57.5, 36.8, 48.3 and 40.9 cm, respectively. Based on plant height before cut, two shortest plants, white clover and ground ivy, were considered effective as ground cover plants in Aronia field. Coverage at $3^{rd}$ year by cover plants ranged from 85% to 100%. Coverage of uncovered Aronia field by native weed species was 95% while coverage by 4 treatments, kentucky bluegrass, white clover, rattail fescue and ground ivy were 100, 87, 85 and 100%, respectively. Aronia yield per plant at $3^{rd}$ year was 1,916 g with white clover cover followed by 1,770 g with Rattail fescue, 1,766 g with ground ivy, 1,098 g without cover plants and 931 g with Kentucky Bluegrass. Out results indicated that ground ivy was the best among all treatments based on 3 criteria, (1) short plant architecture, (2) rapid ground covering and (3) better weed control. In addition, ground ivy cover appeared to secure better yield.

Evaluation of Water Quality Impacts of Forest Fragmentation at Doam-Dam Watershed using GIS-based Modeling System (GIS 기반의 모형을 이용한 도암댐 유역의 산림 파편화에 따른 수(水)환경 영향 평가)

  • Heo, Sung-Gu;Kim, Ki-Sung;Ahn, Jae-Hun;Yoon, Jong-Suk;Lim, Kyoungjae;Choi, Joongdae;Shin, Yong-Chul;Lyou, Chang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.81-94
    • /
    • 2006
  • The water quality impacts of forest fragmentation at the Doam-dam watershed were evaluated in this study. For this ends, the watershed scale model, Soil and Water Assessment Tool (SWAT) model was utilized. To exclude the effects of different magnitude and patterns in weather, the same weather data of 1985 was used because of significant differences in precipitation in year 1985 and 2000. The water quality impacts of forest fragmentation were analyzed temporarily and spatially because of its nature. The flow rates for Winter and Spring has increased with forest fragmentations by $8,366m^3/month$ and $72,763m^3/month$ in the S1 subwatershed, experiencing the most forest fragmentation within the Doam-dam watershed. For Summer and Fall, the flow rate has increased by $149,901m^3/month$ and $107,109m^3/month$, respectively. It is believed that increased flow rates contributed significant amounts of soil erosion and diffused nonpoint source pollutants into the receiving water bodies. With the forest fragmentation in the S1 watershed, the average sediment concentration values for Winter and Spring increased by 5.448mg/L and 13.354mg/L, respectively. It is believed that the agricultural area, which were forest before the forest fragmentation, are responsible for increased soil erosion and sediment yield during the spring thaw and snow melts. For Spring and Fall, the sediment concentration values increased by 20.680mg/L and 24.680mg/L, respectively. Compared with Winter and Spring, the increased precipitation during Summer and Fall contributed more soil erosion and increased sediment concentration value in the stream. Based on the results obtained from the analysis performed in this study, the stream flow and sediment concentration values has increased with forest fragmentation within the S1 subwatershed. These increased flow and soil erosion could contribute the eutrophication in the receiving water bodies. This results show that natural functionalities of the forest, such as flood control, soil erosion protection, and water quality improvement, can be easily lost with on-going forest fragmentation within the watershed. Thus, the minimize the negative impacts of forest fragmentation, comprehensive land use planning at watershed scale needs to be developed and implemented based on the results obtained in this research.

  • PDF

The Acid Buffer Capacity of a Horizons in Young Residual Entisols in Korea

  • Zhang, Yong-Seon;Sonn, Yeon-Kyu;Lee, Gye-Jun;Han, Kyung-Hwa;Cho, Hee-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.519-524
    • /
    • 2013
  • pH buffer capacities (pHBC, $cmol_c\;kg^{-1}\;pH^{-1}$) of 6 residual Entisols derived from granite, granite-gneiss, limestone, sandstone, shale, and basalt in Korea were studied. Soil acidity may become a problem if the soil pH is reduced to critical levels when nutrient cycles are unbalanced (especially N, C and S). The relation between the pHBC and the physico-chemical properties of the 6 soils was also studied. In the A horizons of all the soils except Euiseong series developed from sandstone, the contents of clay, organic matter and cation exchange capacity (CEC) were higher than those of C horizon, but bulk density and pH were lower than C horizon. Clay content of Euiseong series decreased with soil depth, which might be caused by the elluviation. The soils developed from granite, granite-gneiss and sandstone have a higher $SiO_2$ content than those developed from basalt and limestone. The contents of $Fe_2O_3$ and MgO were high in the soils from developed from basalt, limestone and shale comparing with the soils from granite, granite-gneiss and sandstone. The soils from basalt and limestone showed higher values of ignition loss than those from the other parent rocks. The pHBC of the soils was ranged from 1.8 to 3.2 $cmol_c\;kg^{-1}\;pH^{-1}$ showing as follows : basalt, limestone > shale, granite-gneiss > granite sandstone.

Nutrient Composition of Domestic Potato Cultivars (국내산 감자 품종별 영양 성분 비교)

  • Kwon, Oh-Yun;Kim, Hyun-Ju;Oh, Sang-Hee;Lee, Jeong-Hee;Kim, Hyoung-Chin;Yoon, Won-Kee;Kim, Hwan-Mook;Park, Chun-Soo;Kim, Mee-Ree
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.6
    • /
    • pp.740-746
    • /
    • 2006
  • The proximates, vitamin C, minerals, and fatty acids of five potato cultivars were evaluated by AOAC methods, the hydrazine method, ICP-AES, and gas chromatography, respectively. The proximate analyses; vitamin C, reducing sugar, and soluble solid contents; and mineral and fatty acid compositions were significantly different among the five cultivars. The Superior cultivar contained a higher carbohydrate content and higher Ca/P ratio and lower levels of crude protein and Na. The Atlantic cultivar contained significantly higher amount of energy, carbohydrate, reducing sugar, vitamin C, SEA, and MUFA, and significantly lower amount of minerals and PUFA. The Shepody cultivar contained significantly higher amount of carbohydrate and MUFA, and significantly lower amount of soluble solid, vitamin C, and SFA. In addition, the P, Fe, Mg, Cu, and Al levels were significantly higher in Shepody, and Zn content was significantly lower. The Jopung cultivar contained significantly higher levels of moisture and Na, and significantly lower levels of soluble content, reducing sugar, carbohydrate, crude protein, and fat. Finally, the Namsuh cultivar contained significantly higher amount of soluble solid, crude protein, K, Mg, and Al, and significantly lower amount of reducing sugar.

  • PDF

Eliminating Potato Virus Y (PVY) and Potato Leaf Roll Virus (PLRV) Using Cryotherapy of in vitro-grown Potato Shoot Tips

  • Yi, Jung-Yoon;Lee, Gi-An;Jeong, Jong-Wook;Lee, Sok-Young;Lee, Young-Gyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.498-504
    • /
    • 2014
  • Potato virus Y (PVY) and potato leafroll virus (PLRV) are among the most damaging potato viruses and prevalent in most potato growing areas. In this study, cryopreservation was used to eradicate PVY and PLRV using two cryogenic methods. Potato shoot tips proliferated in vitro were cryopreserved through droplet-vitrification and encapsulation-vitrification using plant vitrification solution 2 (PVS2; 30% glycerol + 15% dimethyl sulfoxide + 15.0% ethylene glycol + 13.7% sucrose) and modified PVS2. Both cryogenic procedures produced similar rates of survival and regrowth, which were lower than those from shoot tip culture alone. The health status of plantlets regenerated from shoot tip culture alone and cryopreservation was checked by reverse transcription-polymerase chain reaction. The frequency of virus-free plants regenerated directly from highly proliferating shoot tips reached 42.3% and 48.6% for PVY and PLRV, respectively. In comparison, the frequency of PVY and PLRV eradication after cryopreservation was 91.3~99.7% following shoot-tip culture. The highest cryopreserved shoot tip regeneration rate was observed when shoot tips were 1.0~1.5 mm in length, but virus eradication rates were very similar (96.4~99.7%), regardless of shoot tip size. This efficient cryotherapy protocol developed to eliminate viruses can also be used to prepare potato material for safe long-term preservation and the production of virus-free plants.

Gray Mold on Carrot Caused by Botrytis cinerea in Korea

  • Park, Kyeong-Hun;Ryu, Kyoung-Yul;Yun, Hye-Jeong;Yun, Jeong-Chul;Kim, Byeong-Seok;Jeong, Kyu-Sik;Kwon, Young-Seok;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.364-368
    • /
    • 2011
  • Gray mold caused by Botrytis cinerea was found on a carrot seedling in a greenhouse and a field at Daegwallryeong, Gangwon Province in 2007-2009. Symptoms included irregular, brown, blight, or chlorotic halo on leaves and petioles of the carrots. Fungal conidia were globose to subglobose or ellipsoid, hyaline or pale brown, nonseptate, one celled, $7.2-18.2{\times}4.5-11\;{\mu}m$ ($12.1{\times}8.3\;{\mu}m$) in size, and were formed on botryose heads. B. cinerea colonies were hyaline on PDA, and then turned gray and later changed dark gray or brown when spores appeared. The fungal growth stopped at $35^{\circ}C$, temperature range for proper growth was $15-25^{\circ}C$ on MEA and PDA. Carrots inoculated with $1{\times}10^5$ ml conidial suspension were incubated in a moist chamber at $25{\pm}1^{\circ}C$ for pathogenicity testing. Symptoms included irregular, brown, water-soaked rot on carrot roots and irregular, pale brown or dark brown, water-soaked rot on leaves. Symptoms were similar to the original symptoms under natural conditions. The pathogen was reisolated from diseased leaves, sliced roots, and whole roots after inoculation. As a result, this is the first report of carrot gray mold caused by B. cinerea in Korea.