• Title/Summary/Keyword: Higher-Order Shear Deformation Theory

Search Result 338, Processing Time 0.027 seconds

Impact Response Behaviors of Laminated Composite Plates Subjected to the Transversely Impact of a Steel Ball (강구에 의한 횡방향 충격을 받는 적층복합판의 충격 응답 거동)

  • 김문생;김남식;박승범;백인환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.44-56
    • /
    • 1993
  • The purpose of this paper is to analyze the impact response behaviors of glass/epoxy laminated composite plates subjected to the transversely impact of a steel ball. For this purpose, dynamic finite element analysis based on the higher-order shear defomation plate theory is used to compute the contact forces, rebound velocity of a steel ball, and dynamic strain response histories. And low-velocity and high-velocity impact experiments were conducted to compare the results and compute the wave propagation velocities. The results obtained from impact experiments are in good agreement with those of dynamic finite element analysis. Also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well, and wave velocities were higher in the smaller radius of steel ball.

  • PDF

Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels

  • Chavan, Shivaji G.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.21-49
    • /
    • 2018
  • In this paper, geometric nonlinear bending characteristics of single wall carbon nanotube reinforced composite (SWCNTRC) doubly curved shell panels subjected to uniform transversely loadings are investigated. The nonlinear mathematical model is developed for doubly curved SWCNTRC shell panel on the basis of higher-order shear deformation theory and Green- Lagrange nonlinearity. All nonlinear higher order terms are included in the mathematical model. The effective material properties of SWCNTRC are estimated by using Eshelby-Mori-Tanaka micromechanical approach. The governing equation of the shell panel is obtained using the total potential energy principle and a Newton-Raphson iterative method is employed to compute the nonlinear displacement and stresses. The present results are compared with published literature. The effect of SWCNT volume fraction, width-to-thickness ratio, radius-to-width ratio (R/a), boundary condition, linear and nonlinear deflection, stresses and different types of shell geometry on nonlinear bending response is investigated.

Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory

  • Taherifar, Reza;Zareei, Seyed Alireza;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.99-115
    • /
    • 2020
  • This article deals with the dynamic analysis in pad concrete foundation containing Silica nanoparticles (SiO2) subject to seismic load. In order to control the foundation smartly, a piezoelectric layer covered the foundation. The weight of the building by a column on the foundation is assumed with an external force in the middle of the structure. The foundation is located in soil medium which is modeled by spring elements. The Mori-Tanaka law is utilized for calculating the equivalent mechanical characteristics of the concrete foundation. The Kevin-Voigt model is adopted to take into account the structural damping. The concrete structure is modeled by a thick plate and the governing equations are deduced using Hamilton's principle under the assumption of higher-order shear deformation theory (HSDT). The differential quadrature method (DQM) and the Newmark method are applied to obtain the seismic response. The effects of the applied voltage to the smart layer, agglomeration and volume percent of SiO2 nanoparticles, damping of the structure, geometrical parameters and soil medium of the structure are assessed on the dynamic response. It has been demonstrated by the numerical results that by applying a negative voltage, the dynamic deflection is reduced significantly. Moreover, silica nanoparticles reduce the dynamic deflection of the concrete foundation.

Buckling and Vibration Analysis of Antisymmetric Angle-ply laminated Composite Plates using a Three-dimensional Higher-order Theory (3차원 고차이론을 이용한 역대칭 앵글-플라이를 갖는 복합재료 적층판의 좌굴 및 진동해석)

  • Lee, Won Hong;Han, Sung Cheon;Chun, Kyoung Sik;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.97-107
    • /
    • 2003
  • To obtain a more accurate response from larninated composite structures, the effect of transverse shear deformation, transverse normal strain/stress, and nonlinear variation of in-plane displacements vis-$\\grave{a}$-vis the thickness coordinate should be considered in the analysis. The improved higher-order theory was used to determine the critical buckling load and natural frequencies of laminated composite structures. Solutions of simply supported laminated composite plates and sandwiches were obtained in closed form using Navier's technique, with the results compared with calculated results using the first order and other higher-order theories. Numerical results were presented for fiber-reinforced laminates, which show the effects of ply orientation, number of layers, side-toithickness ratio, and aspects ratio.

Large deformation bending analysis of functionally graded spherical shell using FEM

  • Kar, Vishesh Ranjan;Panda, Subrata Kumar
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.661-679
    • /
    • 2015
  • In this article, nonlinear finite element solutions of bending responses of functionally graded spherical panels are presented. The material properties of functionally graded material are graded in thickness direction according to a power-law distribution of volume fractions. A general nonlinear mathematical shallow shell model has been developed based on higher order shear deformation theory by taking the geometric nonlinearity in Green-Lagrange sense. The model is discretised using finite element steps and the governing equations are obtained through variational principle. The nonlinear responses are evaluated through a direct iterative method. The model is validated by comparing the responses with the available published literatures. The efficacy of present model has also been established by demonstrating a simulation based nonlinear model developed in ANSYS environment. The effects of power-law indices, support conditions and different geometrical parameters on bending behaviour of functionally graded shells are obtained and discussed in detail.

Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties

  • Kar, Vishesh R.;Panda, Subrata K.;Mahapatra, Trupti R.
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.205-221
    • /
    • 2016
  • In this article, the buckling responses of functionally graded curved (spherical, cylindrical, hyperbolic and elliptical) shell panels under elevated temperature load are investigated numerically using finite element steps. The effective material properties of the functionally graded shell panel are evaluated using Voigt's micromechanical model through the power-law distribution with and without temperature dependent properties. The mathematical model is developed using the higher-order shear deformation theory in conjunction with Green-Lagrange type nonlinear strain to consider large geometrical distortion under thermal load. The efficacy of the proposed model has been checked and the effects of various geometrical and material parameters on the buckling load are analysed in details.

Impact Damage of CFRP Laminated Composites Subjected to Impact Loading (충격하중을 받는 CFRP 적층복합재의 충격손상에 관한 연구)

  • M.S. KiM;Park, S.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.116-125
    • /
    • 1997
  • An investigation was performed to study the impact damage in CFRP laminated composites subjected to impact loading. A finite element model has been developed for predicting the impact damage in laminated composite plates resulting from the ballistic impact. The finite element model was based on the higher-order shear deformation theory and was used to predict the initial intraply matrix cracking and the shape and size of interface delamination in laminated composites. Numerical simulation was performed and then the initiation of the matrix cracking and the shape and size of impacted induced delamination were predicted, and te results were compared with those of impact experiments with the same dimension and stacking sequences. A linear relationship holds between impact velocity and length and width of delamination. As impact velocity is increased, the increase of delamination length is highger than the increase of delamination width.

  • PDF

Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel

  • Kar, Vishesh R.;Panda, Subrata K.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.693-709
    • /
    • 2015
  • In this article, nonlinear free vibration behaviour of functionally graded spherical panel is analysed. A nonlinear mathematical model is developed based on higher order shear deformation theory for shallow shell by taking Green-Lagrange type of nonlinear kinematics. The material properties of functionally graded material are assumed to be varying continuously in transverse direction and evaluated using Voigt micromechanical model in conjunction with power-law distribution. The governing equation of the shell panel is obtained using Hamilton's principle and discretised with the help of nonlinear finite element method. The desired responses are evaluated through a direct iterative method. The present model has been validated by comparing the frequency ratio (nonlinear frequency to linear frequency) with those available published literatures. Finally, the effect of geometrical parameters (curvature ratio, thickness ratio, aspect ratio and support condition), power law indices and amplitude of vibration on the frequency ratios of spherical panel have been discussed through numerical experimentations.

Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory

  • Bennai, Riadh;Fourn, Hocine;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bessaim, Aicha
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.49-62
    • /
    • 2019
  • In this paper, an analytical analysis for the study of vibratory behavior and wave propagation of functionally graded plates (FGM) is presented based on a high order shear deformation theory. The manufacture of these plates' defects can appear in the form of porosity. This latter can question and modify the global behavior of such plates. A new shape of the distribution of porosity according to the thickness of the plate was used. The field of displacement of this theory is present of indeterminate integral variables. The modulus of elasticity and the mass density of these plates are assumed to vary according to the thickness of the plate. Equations of motion are derived by the principle of minimization of energies. Analytical solutions of free vibration and wave propagation are obtained for FGM plates simply supported by integrating the analytic dispersion relation. Illustrative examples are given also to show the effects of variation of various parameters such as(porosity parameter, material graduation, thickness-length ratio, porosity distribution) on vibration and wave propagation of FGM plates.

Matrix Cracking and Delmaination in Laminated Composite Plates Due to Impact (적층복합판의 충격에 의한 모재균열 및 층간분리에 관한 연구)

  • Kim, Moon-Saeng;Park, Seung-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.317-326
    • /
    • 1997
  • An investigation was performed to study the matrix cracking and delamination in laminated composite plates due to transverse impact. A model was developed for predicting the initiation of the matrix cracking and the shape and size of impact-induced delamination in laminated composite plates resulting from the ballistic impact. The model consists of a stress analysis and a failure analysis. A transient finite element analysis which was based on the higher-order shear deformation theory was adopted for calculating the stresses inside the laminated composite plates during impact. A failure analysis was used to predict the initial intraply matrix cracking and the shape and size of the interface delamination in the laminates. As a results, a shear matrix cracking which was governed by the transverse interlaminar shear stress occured at the middle layer near the midplane of laminates and a bending matrix cracking which was governed by the transverse inplane stress occured at the bottom layer near the surface of laminates. In a thick laminates, a shear matrix cracking generated first at the middle layer of laminates, but in a thin laminates, a bending matrix cracking generated first at the bottom layer of laminates.