• Title/Summary/Keyword: Higher Order Theory

Search Result 824, Processing Time 0.024 seconds

Static analysis of the FGM plate with porosities

  • Benferhat, R.;Hassaine Daouadji, T.;Hadji, L.;Said Mansour, M.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.123-136
    • /
    • 2016
  • This work focuses on the behavior of the static analysis of functionally graded plates materials (FGMs) with porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose a new refined plate theory is used in this work, it contains only four unknowns, unlike five unknowns for other theories. This new model meets the nullity of the transverse shear stress at the upper and lower surfaces of the plate. The parabolic distribution of transverse shear stresses along the thickness of the plate is taken into account in this analysis; the material properties of the FGM plate vary a power law distribution in terms of volume fraction of the constituents. The rule of mixture is modified to describe and approximate material properties of the FG plates with porosity phases. The validity of this theory is studied by comparing some of the present results with other higher-order theories reported in the literature, the influence of material parameter, the volume fraction of porosity and the thickness ratio on the behavior mechanical P-FGM plate are represented by numerical examples.

Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams

  • Bensaid, Ismail;Cheikh, Abdelmadjid;Mangouchi, Ahmed;Kerboua, Bachir
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.13-26
    • /
    • 2017
  • In this work we introduce a higher-order hyperbolic shear deformation model for bending and frees vibration analysis of functionally graded beams. In this theory and by making a further supposition, the axial displacement accounts for a refined hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the beam boundary surfaces, so no need of any shear correction factors (SCFs). The material properties are continuously varied through the beam thickness by the power-law distribution of the volume fraction of the constituents. Based on the present refined hyperbolic shear deformation beam model, the governing equations of motion are obtained from the Hamilton's principle. Analytical solutions for simply-supported beams are developed to solve the problem. To verify the precision and validity of the present theory some numerical results are compared with the existing ones in the literature and a good agreement is showed.

Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle

  • Gafour, Youcef;Hamidi, Ahmed;Benahmed, Abdelillah;Zidour, Mohamed;Bensattalah, Tayeb
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.37-47
    • /
    • 2020
  • This work focuses on the behavior of non-local shear deformation beam theory for the vibration of functionally graded (FG) nanobeams with porosities that may occur inside the functionally graded materials (FG) during their fabrication, using the non-local differential constitutive relations of Eringen. For this purpose, the developed theory accounts for the higher-order variation of transverse shear strain through the depth of the nanobeam. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived from Hamilton's principle. Analytical solutions are presented for a simply supported FG nanobeam with porosities. The validity of this theory is verified by comparing some of the present results with other higher-order theories reported in the literature, the influence of material parameters, the volume fraction of porosity and the thickness ratio on the behavior mechanical P-FGM beam are represented by numerical examples.

Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates

  • Alazwari, Mashhour A.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.117-137
    • /
    • 2022
  • Effect of thickness stretching on free vibration, bending and buckling behavior of carbon nanotubes reinforced composite (CNTRC) laminated nanoplates rested on new variable elastic foundation is investigated in this paper using a developed four-unknown quasi-3D higher-order shear deformation theory (HSDT). The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Two new forms of CNTs reinforcement distribution are proposed and analyzed based on cosine functions. By considering the higher-order nonlocal strain gradient theory, microstructure and length scale influences are included. Variational method is developed to derive the governing equation and Galerkin method is employed to derive an analytical solution of governing equilibrium equations. Two-dimensional variable Winkler elastic foundation is suggested in this study for the first time. A parametric study is executed to determine the impact of the reinforcement patterns, nonlocal parameter, length scale parameter, side-t-thickness ratio and aspect ratio, elastic foundation and various boundary conditions on bending, buckling and free vibration responses of the CNTRC plate.

Nonlocal strain gradient theory for bending analysis of 2D functionally graded nanobeams

  • Aicha Bessaim;Mohammed Sid Ahmed Houari;Smain Bezzina;Ali Merdji;Ahmed Amine Daikh;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.731-738
    • /
    • 2023
  • This article presents an analytical approach to explore the bending behaviour of of two-dimensional (2D) functionally graded (FG) nanobeams based on a two-variable higher-order shear deformation theory and nonlocal strain gradient theory. The kinematic relations are proposed according to novel trigonometric functions. The material gradation and material properties are varied along the longitudinal and the transversal directions. The equilibrium equations are obtained by using the virtual work principle and solved by applying Navier's technique. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the bending and stresses response of (2D) FG nanobeams to nonlocal length scale, strain gradient microstructure scale, material distribution and geometry.

Effects of size-dependence on static and free vibration of FGP nanobeams using finite element method based on nonlocal strain gradient theory

  • Pham, Quoc-Hoa;Nguyen, Phu-Cuong
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.331-348
    • /
    • 2022
  • The main goal of this article is to develop the finite element formulation based on the nonlocal strain gradient and the refined higher-order deformation theory employing a new function f(z) to investigate the static bending and free vibration of functionally graded porous (FGP) nanobeams. The proposed model considers the simultaneous effects of two parameters: nonlocal and strain gradient coefficients. The nanobeam is made by FGP material that exists in un-even and logarithmic-uneven distribution. The governing equation of the nanobeam is established based on Hamilton's principle. The authors use a 2-node beam element, each node with 8 degrees of freedom (DOFs) approximated by the C1 and C2 continuous Hermit functions to obtain the elemental stiffness matrix and mass matrix. The accuracy of the proposed model is tested by comparison with the results of reputable published works. From here, the influences of the parameters: nonlocal elasticity, strain gradient, porosity, and boundary conditions are studied.

Isogeometric Analysis of FG-CNTRC Plate in Bending based on Higher-order Shear Deformation Theory (탄소 나노튜브 보강 기능경사복합재 판의 등기하 거동 해석)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.839-847
    • /
    • 2021
  • Purpose: This study investigates mechanical behavior of functionally graded (FG) carbon nanotube-reinforced composite (CNTRC) plate in flexure. Isogeometric analysis (IGA) method coupled with shear deformable theory of higher-order (HSDT) to analyze the nonlinear bending response is presented. Method: Shear deformable plate theory into which a polynomial shear shape function and the von Karman type geometric nonlinearity are incorporated is used to derive the nonlinear equations of equilibrium for FG-CNTRC plate in bending. The modified Newton-Raphson iteration is adopted to solve the system equations. Result: The dispersion pattern of carbon nanotubes, plate geometric parameter and boundary condition have significant effects on the nonlinear flexural behavior of FG-CNTRC plate. Conclusion: The proposed IGA method coupled with the HSDT can successfully predict the flexural behavior of FG-CNTRC plate.

A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations

  • Hachemi, Houari;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Mohamed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.717-726
    • /
    • 2017
  • In this paper, a new simple shear deformation theory for bending analysis of functionally graded plates is developed. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not required. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. Equations of motion are obtained by utilizing the principle of virtual displacements and solved via Navier's procedure. The elastic foundation is modeled as two parameter elastic foundation. The results are verified with the known results in the literature. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, elastic foundation, and volume fraction distributions are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the bending behaviour of functionally graded plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

Dynamic response of nano-scale plates based on nonlocal elasticity theory (비국소 탄성 이론을 이용한 나노-스케일 판의 강제진동응답)

  • Kim, Jin-Kyu;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.436-444
    • /
    • 2013
  • This article presents the dynamic response of nano-scale plates using the nonlocal continuum theory and higher-order shear deformation theory. The nonlocal elasticity of Eringen has ability to capture the small scale effects and the higher-order shear deformation theory has ability to capture the quadratic variation of shear strain and consequently shear stress through the plate thickness. The solutions of transient dynamic analysis of nano-scale plate are presented using these theories to illustrate the effect of nonlocal theory on dynamic response of the nano-scale plates. The relations between nonlocal and local theories are discussed by numerical results. Also, the effects of nonlocal parameters, aspect ratio, side-to-thickness ratio, size of nano-scale plate and time step on dynamic response are investigated and discussed. The amplitude and cycle increase when nonlocal parameter increase. In order to validate the present solutions, the reference solutions are used and discussed. The theoretical development as well as numerical solutions presented herein should serve as reference for nonlocal theories as applied to the transient dynamic analysis of nano-scale structures.

A Modified Simple Acoustic Analysis of Rectangular Simple Expansion Chamber with Consideration of Higher Order Modes (고차모드를 고려한 사각형 단순 확장관의 간편음향해석법의 개선)

  • 김봉준;정의봉;황상문
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.340-347
    • /
    • 1999
  • The acoustic performance of reactive type single expansion chamber can be calculated theoretically by plane wave theory. But higher order model should be considered to widen the frequency range. Mode matching method has been developed to consider higher order modes, but very complicated algebra should be used. Munjal suggested a numerical collocation method, which can overcome the shortcomings of mode matching method, using the compatibility conditions for acoustic pressure and particle velocity at the junctions of area discontinuities. But the restriction of Munjal's method is that the ratio between the area of inlet(or outlet) pipe and that of chamber must be natural number. In this paper, the new method was suggested to overcome the shortcomings of Munjal's method. The predictions by this method was also compared with those by the finite element method and Munjal's method in order to demonstrate the accuracy of the modified method presented here.

  • PDF