• 제목/요약/키워드: High-weight concrete

검색결과 520건 처리시간 0.03초

광물성 기포제를 이용한 경량기포콘크리트의 물리적성질에 관한 실험적 연구 (A Experimental Study on the Physical properties of Lightweight Foamed Concrete Using Mineral Foam Agent)

  • 유제준;이한승;배규웅;이상섭;연규봉
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.49.1-52
    • /
    • 2003
  • The objective of this study the mechanical characteristics of preformed lightweight foamed concrete using the mineral foam agent which has high lightness, and strength. The compressive strength of lightweight foamed concrete using mineral foam agent are about 2 times degree high those the of lightweight foamed concrete using vegetable foam agent. Lightweight foamed concrete was able to obtain the result of 50kg/$\textrm{m}^3$ or more compressive strength, when was unit weight 0.8t/$\textrm{m}^3$. In the can of the same unit weight of concrete, it is influenced by w/c of loan agent ratio. The paper present extensive data on characteristics of compressive strength of the concrete manufactured with the different factors in mix design and also present optimum mix proportion.

  • PDF

압축강도 120 MPa, 단위중량 20 kN/m3 고강도 경량 콘크리트 부착-슬립 거동 평가 (Evaluation of Bond-Slip Behavior of High Strength Lightweight Concrete with Compressive Strength 120 MPa and Unit Weight 20 kN/m3)

  • 구동길;오준환;유성원
    • 한국건설순환자원학회논문집
    • /
    • 제11권1호
    • /
    • pp.39-47
    • /
    • 2023
  • 최근 구조물의 장대화로 인하여 고강도 재료의 경량화 요구가 빈번해지고 있는 실정이다. 하지만 현재까지는 압축강도 120 MPa, 단위중량 20 kN/m3 정도의 고강도 경량 콘크리트를 구조부재에 적용하기 위한 콘크리트와 철근의 부착 특성에 관한 연구가 부족한 실정이다. 따라서 본 논문에서는 압축강도 120 MPa, 단위중량 20 kN/m3 정도의 고강도 경량 콘크리트 108개의 시편을 제작하여 직접 인발 부착실험을 수행하였고, 실험결과와 현행 설계기준과 비교하여 부착특성을 평가하였다. 솔리드버블은 단위중량 감소에 비해서 압축강도 및 탄성계수 감소효과는 상대적으로 적게 나타나, 초경량화를 위해서는 반드시 적용되어야 할 재료로 판단되며, ACI-408R의 부착강도 산정식과 실험결과는 비교적 유사한 것으로 판단되며, 더 낮은 압축강도, 단위중량의 콘크리트보다 더 큰 슬립 및 매개변수 값을 가지는 것으로 나타났다.

고강도 경량콘크리트의 실용화를 위한 기초적 실험연구 (Fundamental Tests for General Use of High-Strength Lightweight Concrete)

  • 김형태;김원근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.39-44
    • /
    • 1990
  • This experimental study is performed by using artificial lightweight aggregate manufactured in laboratory, and the test results of it are compared with those using foreign materials in respect of design compressive strength, unit weight. The tests on strength characteristics such as bending, splitting tensile strength and on mechanical characteristics including σ-εcurve, elastic modulus, poisson's ratio are performed to provide the fundamental data required for the design. From this study, it is possible to obtain the high-strength concrete having compressive strength of 500 kg/㎠ and unit weight of 1.85-2.0 t/㎥. And also it is recommended that sandlightweight concrete having high specfic strength is more practical for general use.

  • PDF

산업부산물을 활용한 고강도경량 콘크리트 건조수축 특성연구 (A Study on shrinkage of High Strength Lightweight Concrete using by-products)

  • 장주영;윤요현;이승조;박정민;김태곤;김화중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.36-39
    • /
    • 2003
  • In this study, we made the high strength light weight concrete which was composed of the garnet minute powder to be the industry by-product in the YoungJoo region and the artificial light weight aggregate which the high temperature(1100℃) plastic process. The characteristic of the autogenous shrinkage had been considered about strength characteristic and the age passage In the following addition: The concrete's each unit quantity was determined 145,160,175㎏f/㎥.w/b and s/a was determined 30%, 43%, 45%. the each garnet's substitution ratio was determined 0, 10%. In this results, the compressive strength appeared greatly as the unit joining discretion grew bigger. The autogenous shrinkage ratio was increased rapidly until 7th day but it was reduced after 7th day regardless of the mixed factor. The autogenous shrinkage ratio which follows the change of the unit quantity and s/a increased together as the unit quantity and the s/a increases.

  • PDF

Role of ingredients for high strength and high performance concrete - A review

  • Parande, A.K.
    • Advances in concrete construction
    • /
    • 제1권2호
    • /
    • pp.151-162
    • /
    • 2013
  • The performance characteristics of high-strength and high-performance concrete are discussed in this review. Recent developments in the field of high-performance concrete marked a giant step forward in high-tech construction materials with enhanced durability, high compressive strength and high modulus of elasticity particularly for industrial applications. There is a growing awareness that specifications requiring high compressive strength make sense only when there are specific strength design advantages. HPC today employs blended cements that include silica fume, fly ash and ground granulated blast-furnace slag. In typical formulations, these cementitious materials can exceed 25% of the total cement by weight. Silica fume contributes to strength and durability; and fly ash and slag cement to better finish, decreased permeability, and increased resistance to chemical attack. The influences of various mineral admixtures such as fly ash, silica fume, micro silica, slag etc. on the performance of high-strength concrete are discussed.

고강도 콘크리트의 취도계수에 관한 실험적 연구 (An experimental study on the fragility factor of high strength concrete)

  • 김희두;양성환
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.148-149
    • /
    • 2014
  • In modern society, population overcrowding and concentration of facilities are happened because of the concentration on to city. So this phenomenon demands improvement of material's performance, technical development of structure analysis and design and improvement of constructing ability .High strength concrete has some merits. High strengthening makes the cross section reduced, and that cause decrease of structure weight. And using high durable and superplasticizer promote liquidity, thus high quality concrete can be produced. Because of these advantages, this study is for showing validity of using it by compression/tensile strength experiment. As this experiment's result, when concrete become stronger, interface intensity coefficient between cement and aggregate is different and they don't adhere to each other. So there is brittle failure. Fragility factor also steadily increase with strong concrete, it tells high strength concrete has problem. Therefore the sources used in high strength concrete like cement and aggregate must have great quality. So the source's performance must be supervised well because their quality decides performance criteria.

  • PDF

가열 후 냉각조건에 따른 골재 종류별 고강도 콘크리트의 역학적 특성 평가 (Evaluation on Mechanical Properties of High Strength Concrete according to the Aggregate Type and after Heating Cooling Conditions)

  • 윤종일;김규용;남정수;최경철;윤민호;함은영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.99-100
    • /
    • 2012
  • Aggregate thermal properties and cooling methods are most important to evaluate the residual mechanical properties of concrete. In this study, we evaluate the residual mechanical properties of concrete according to the aggregate type and cooling method. We use the normal weight aggregate and light weight aggregate which have different thermal properties. After heating to the target temperature, we evaluate the mechanical properties according to the slow and fast cooling condition. As a result, normal weight aggregate concrete has higher effectiveness of cooling conditions than light weight aggregate concrete.

  • PDF

고강도-경량콘크리트의 배합설계 방안 및 역학적 특성에 관한 연구 (Study on the Mix Design Method and the Mechanical Proerties of High-Strenght Lightweight Concrete)

  • 강훈
    • 레미콘
    • /
    • 7호통권72호
    • /
    • pp.29-41
    • /
    • 2002
  • The purpose of this study is to investigarte the mix design method and the mechanical properties of High stength Lightweight Concrete (HSLC). In the experment, concrete mixing was conducted to select the optimum mix design for HSLC in laboratory. Also, concrete mixing in ready mix design. As a result, it is possible to establish the mix design of HSLC according to the using these experimental results ;the estimate equation for unit weight of HSLC. the relationship between W/C and compressive strength of HSLC and the fluidity of HSLC in the view of workability

  • PDF

재생시멘트와 폐 EPS 재생골재를 사용한 포러스 콘크리트 물성 (A Property of Porous Concrete applied by Recycled Cement and using Recycled Aggregates Made of EPS Waste)

  • 김성수;박차원;안재철;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2004년도 학술대회지
    • /
    • pp.59-63
    • /
    • 2004
  • In recent days. it is necessary to find environment-friendly way of diposing industrial waste and reclying system. So this study will analyze the property of Porous concrete improved by concrete waste powder and recycled lightweight aggregate and then suggest the ways of reclying. The method deals with experimenting unit weight of capacity. thermal conductivity, compression and ultrasonic pluse velocity. Considering the relation between ultrasonic pluse velocity and unit weight & thermal conductivity through the graph. the result of relation between ultrasonic pluse velocity and unit weight & thermal conductivity on the graph expessed their high interaction shown as direct proportion on the graph. Recycled Porous concrete merits lightweight and adiabatic. Therefore. we will expect that the current using ALC and Recycled Porous concrete has be similar thermal conductivity.

  • PDF

Reinforced concrete beams under drop-weight impact loads

  • May, Ian M.;Chen, Yi;Owen, D. Roger J.;Feng, Y.T.;Thiele, Philip J.
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.79-90
    • /
    • 2006
  • This paper describes the results of an investigation into high mass-low velocity impact behaviour of reinforced concrete beams. Tests have been conducted on fifteen 2.7 m or 1.5 m span beams under drop-weight loads. A high-speed video camera has been used at rates of up to 4,500 frames per second in order to record the crack formation, propagation, particle spallation and scabbing. In some tests the strain in the reinforcement has been recorded using "Durham" strain gauged bars, a technique developed by Scott and Marchand (2000) in which the strain gauges are embedded in the bars, so that the strains in the reinforcement can be recorded without affecting the bond between the concrete and the reinforcement. The impact force acting on the beams has been measured using a load cell placed within the impactor. A high-speed data logging system has been used to record the impact load, strains, accelerations, etc., so that time histories can be obtained. This research has led to the development of computational techniques based on combined continuum/discontinuum methods (finite/discrete element methods) to permit the simulation of impact loaded reinforced concrete beams. The implementation has been within the software package ELFEN (2004). Beams, similar to those tested, have been analysed using ELFEN a good agreement has been obtained for both the load-time histories and the crack patterns.