• Title/Summary/Keyword: High-voltage rectification

Search Result 47, Processing Time 0.028 seconds

Comparison of Ripple of High Voltage X-ray Generator by Rectification type (X선 고전압 장치의 정류형태에 따른 리플 비교)

  • Kim, Young-Pyo;Kim, Tae-Gon;Cheon, Min-Woo;Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.128-128
    • /
    • 2010
  • The high-voltage X-ray generator recently used is very popular, because that can be miniaturized, increased in generating efficiency, elaborated in output control. All these features are available with high-frequency made by using an inverter, the fast switching semiconductor device. In this paper to identify the differences among types of rectification, we compared output ripple with full-wave rectification and dual-voltage rectification methods.

  • PDF

Electroluminescence Characteristics of OLED by Full-Wave Rectification Alternating Current Driving Method (전파 정류 교류 구동 방식에 의한 OLED의 전계발광 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Korean Journal of Materials Research
    • /
    • v.32 no.7
    • /
    • pp.320-325
    • /
    • 2022
  • Single OLED and tandem OLED was manufactured to analyze the electroluminescence characteristics of DC driving, AC driving, and full-wave rectification driving. The threshold voltage of OLED was the highest in DC driving, and the lowest in full-wave rectification driving due to an improvement of current injection characteristics. The luminance at a driving voltage lower than 10.5 V (8,534 cd/m2) of single OLED and 20 V (7,377 cd/m2) of a tandem OLED showed that the full-wave rectification drive is higher than that of DC drive. The luminous efficiency of OLED is higher in full-wave rectification driving than in DC driving at low voltage, but decrease at high voltage. The full-wave rectification power source may obtain higher current density, higher luminance, and higher current efficiency than the AC power source. In addition, it was confirmed that the characteristics of AC driving and full-wave rectification driving can be predicted from DC driving characteristics by comparing the measured values and calculated values of AC driving and full-wave rectification driving emission characteristics. From the above results, it can be seen that OLED lighting with improved electroluminescence characteristics compared to DC driving is possible using full-wave rectification driving and tandem OLED.

Comparison of Output and Radiation Quality of X-rays according to the Full-Wave Rectification Method and Dual-Voltage Rectification Method of an X-ray Generator (X선 고전압장치의 전파 및 배전압 정류방식에 따른 X선 출력 및 선질 비교)

  • Kim, Tae-Gon;Cheon, Min-Woo;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.534-538
    • /
    • 2010
  • X-ray systems for medical treatment use noninvasive procedures. Being capable of locally inspecting the inside of the body, X-ray systems are routinely used for basic diagnosis. X-ray systems to be used for medical purposes were originally made with a gas filled tube inside an induction coil in the initial stages of development but with this approach it becomes difficult to take a satisfactory picture through thick body sections, non invasively. However continued development made it possible to take non-invasive pictures of breasts, blood vessels and other body parts through thick body sections. Recently, high-voltage X-ray generators of more compact size, increased generation efficiency, and sophisticated output control have become possible. All of these features are made possible by the use of a high-frequency output from an inverter and a fast switching semiconductor device. In this paper, we describe a new X-ray generator operating with a resonant inverter in order to reduce switching loss and high frequency noise. In addition, in order to identify the differences amongst types of rectification, we have compared output and the quality of X-ray pictures obtained with full-wave rectification and dual-voltage rectification methods.

High Ratio Bidirectional DC-DC Converter with a Synchronous Rectification H-Bridge for Hybrid Energy Sources Electric Vehicles

  • Zhang, Yun;Gao, Yongping;Li, Jing;Sumner, Mark;Wang, Ping;Zhou, Lei
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2035-2044
    • /
    • 2016
  • In order to match the voltages between high voltage battery stacks and low voltage super-capacitors with a high conversion efficiency in hybrid energy sources electric vehicles (HESEVs), a high ratio bidirectional DC-DC converter with a synchronous rectification H-Bridge is proposed in this paper. The principles of high ratio step-down and step-up operations are analyzed. In terms of the bidirectional characteristic of the H-Bridge, the bidirectional synchronous rectification (SR) operation is presented without any extra hardware. Then the SR power switches can achieve zero voltage switching (ZVS) turn-on and turn-off during dead time, and the power conversion efficiency is improved compared to that of the diode rectification (DR) operation, as well as the utilization of power switches. Experimental results show that the proposed converter can operate bidirectionally in the wide ratio range of 3~10, when the low voltage continuously varies between 15V and 50V. The maximum efficiencies are 94.1% in the Buck mode, and 93.6% in the Boost mode. In addition, the corresponding largest efficiency variations between SR and DR operations are 4.8% and 3.4%. This converter is suitable for use as a power interface between the battery stacks and super-capacitors in HESEVs.

Characteristics of High Efficiency DC/DC Converter for Self-Dr Synchronous Retifier (자기구동 동기정류를 위한 고효율 DC/DC컨버터의 특성비교)

  • Yoon, Suk-Ho;Moon, Gun-Woo;Yoon, Jong-Soo;Kim, Yong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1973-1976
    • /
    • 1998
  • Recently, new trend in telecommunication device is to apply low voltage, about 3.3V-1.5V. However, it is undesirable in view of high efficiency and power desity which is the most important requirement in the distributed power system. Rectification loss in the output stage, in on-board converter for distributed power system are constrained to obtain high efficience at low output voltage power suppies. This paper explains the basic operational principles of three kinds of ZVS DC/DC converters with self-driven synchronous rectifier. The three topologies are analyzed by simulation and exprimentation, and the characteristics comparisons of high efficience converter are carried out in view of the minimized rectification losses in the out stage.

  • PDF

X-선 발생장치 정류방식에 따른 출력특성에 관한 연구

  • Na, Gil-Ju;Baek, Su-Ung;Yang, Hyeon-Hun;Park, Gye-Chun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.126-126
    • /
    • 2009
  • X-ray high-voltage generator is the most important part that can decide the radiation exposure dose affecting a patient or operator according to the characteristic. If decrease of X-ray radiation exposure dose and output characteristic of high-voltage generator is unstable, a patient or operator must be exposed to more radiation. This study measures and analyzes the exposure dose reproducibility and output characteristic according to a change of tube current on the various rectification methods of diagnostic X-ray equipment. It can find that quality bastardize and output is increased if voltage of X-ray tube is increased. Exposure dose reproducibility according to output of X-ray equipment is extremely excellent in inverter type, and is stable in order of following three-phase, a single-phase and condenser method. This study can find that the reply incidence of high-voltage generator is generated due to difference in rectification method, noise occurs in X-ray due to that, quality of an image is decreased due to that, and medical diagnosis can be failed due to that.

  • PDF

Characteristic Analysis of X-ray Device using the High Voltage Generator on Full-wave Rectification Method (전파정류방식의 고전압발생장치를 이용한 X선 기기의 특성 평가)

  • Kim, Young-Pyo;Kim, Tae-Gon;Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.516-521
    • /
    • 2009
  • X-ray system which is usefully used in diagnosis of the patient, being bombed of radioactivity is a big weak point when irradiates a X-ray to the human body so that ICRP restricted the radiation exposure tolerance of the human body. In order to reduce being bombed, the many research and development is now advanced. A lots of diagnostic X-ray machines have currently used due to the increase of occurrence efficiency of X-ray and precisely the output control by using the inverter which is a high speed switching semiconductors. For getting the confidence of the X-ray machine, the same radiation occurrence, same evaluation, and same irradiation condition are necessary when evaluates X-ray irradiation. It is the most important part for the accuracy of the test result and the patient safety. This research has produced the high voltage occurrence system of full-wave rectification method by using the LC resonance inverter, and evaluated the irradiation reproducibility in order to use it in diagnosis of the patient.

A High Frequency-Link Bidirectional DC-DC Converter for Super Capacitor-Based Automotive Auxiliary Electric Power Systems

  • Mishima, Tomokazu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper presents a bidirectional DC-DC converter suitable for low-voltage super capacitor-based electric energy storage systems. The DC-DC converter presented here consists of a full-bridge circuit and a current-fed push-pull circuit with a high frequency (HF) transformer-link. In order to reduce the device-conduction losses due to the large current of the super capacitor as well as unnecessary ringing, synchronous rectification is employed in the super capacitor-charging mode. A wide range of voltage regulation between the battery and the super capacitor can be realized by employing a Phase-Shifting (PS) Pulse Width Modulation (PWM) scheme in the full-bridge circuit for the super capacitor charging mode as well as the overlapping PWM scheme of the gate signals to the active power devices in the push-pull circuit for the super capacitor discharging mode. Essential performance of the bidirectional DC-DC converter is demonstrated with simulation and experiment results, and the practical effectiveness of the DC-DC converter is discussed.

Effects of Contrast Improvement on High Voltage Rectification Type of X-ray Diagnostic Apparatus (X선 진단장치의 고압정류방식이 대조도 향상에 미치는 영향)

  • Lee, Hoo-Min;Yoon, Joon;Kim, Hyun-Ju
    • Journal of radiological science and technology
    • /
    • v.37 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier.

An Improved Zero Voltage Switching Forward DC/DC Converter For Reducing Switching Losses

  • Kim, Eun-Soo;Joe, Kee-Yeon;Park, Hae-Young;Kim, Yoon-Ho;Kim, Choon-Same
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.1051-1055
    • /
    • 1998
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved zero voltage switching forward dc/dc converter is proposed. The proposed converter is constructed by using energy recovery snubbers in parallel with the main switches and output diodes of the conventional forward dc/dc converter. Due to the use of the energy recovery snubbers in the primary and secondary side, the proposed converter achieves zero-voltage-switching turn-off without switching losses for switching devices and output rectification diodes. The complete operating principles and experimental results will be presented.