• Title/Summary/Keyword: High-voltage flyback topology

Search Result 32, Processing Time 0.029 seconds

High Voltage SMPS Design based on Dual-Excitation Flyback Converter (이중 여자 플라이백 기반 고압 SMPS 설계)

  • Yang, Hee-Won;Kim, Seong-Ae;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.115-124
    • /
    • 2017
  • This paper aims to develop an SMPS topology for handling a high range of input voltages based on a DC-DC flyback converter circuit. For this purpose, 2 capacitors of the same specifications were serially connected on the input terminal side, with a flyback converter of the same circuit configuration serially connected to each of them, so as to achieve high input voltage and an effect of dividing input voltage. The serially connected flyback converters have the transformer turn ratio of 1:1, so that each coil is used for the winding of a single transformer, which is a characteristic of doubly-fed configuration and enables the correction of input capacitor voltage imbalance. In addition, a pulse transformer was designed and fabricated in a way that can achieve the isolation and noise robustness of the PWM output signal of the PWM controller that applies gate voltage to individual flyback converter switches. PSIM simulation was carried out to verify such a structure and confirm its feasibility, and a 100W class stack was fabricated and used to verify the feasibility of the proposed high voltage SMPS topology.

1KW converter using boost-flyback topology (Boost-Flyback topology를 이용한 1KW급 Converter)

  • Hwang, Sun-Nam;Chae, Hyeng-Jun;Lim, Sung-Kyoo;Lee, Jun-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • This paper proposed DC-DC converter for fuel cell that have high voltage and high current output characteristics. It is required step-up converter to use by general power supply, because the general rated voltage of fuel cell is low about 20$\sim$50V. The miniaturization of converter and DC link voltage can be controlled and high quality of output voltage uses mainly DC-DC converter. The boost converter and buck-boost converter do not get high boosting ratio. It is that proposed boost-flyback converter. Through simulation and an experiment, it could get high boosting ratio and efficiency more than 90%.

  • PDF

A utilization of PCB capacitor to reduce the output voltage ripple in Flyback SMPS (PCB 캐패시터를 이용한 플라이백 SMPS 출력 리플 저감 대책)

  • Kim T.G.;Chung G.B.;Lee W.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.102-105
    • /
    • 2003
  • The leakage inductance of the High frequency Transformer(HFT) in the flyback topology can be used an inductor of the Low Pass Filter(LPF) to reduce ripple and ripple noise in the output voltage. But, the values of leakage inductance and magnetizing inductance in the HFT are within $\pm20[{\%}]$). And the operating temperature of the HFT increased by the leakage inductance. Therefore, the leakage inductance of the HFT in the flyback topology has minimum and the LPF has non-polarity ceramic capacitor in the output stage. In this paper, the LPF in the flyback topoBogy takes PCB capacitor using double layer of PCB without non-polarity ceramic capacitor. Its experimental results show the reduced ripple noise and the reduced ripple in the output stage.

  • PDF

Utility-Interactive Modulated Sinewave Inverter with a High Frequency Flyback Transformer Link for Small-Scale Solar Photovoltaic Generator

  • Konishi Y.;Chandhaket S.;Ogura K.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.683-686
    • /
    • 2001
  • This paper presents a novel prototype of the utility­interactive voltage source type sinewave pulse modulated power inverter using a high-frequency flyback transformer link. The proposed power conditioner circuit for the solar photovoltaic generation and small scale fuel cell has an isolation function due to the safety of the power processing system, which is more cost effective and acceptable for the small-scale distributed renewal energy conditioning and processing systems. The discontinuous current mode(DCM) of this power processing conversion circuit is applied to implement a simple circuit topology and pulse modulated control scheme. Its operation principle is described on the basis of simulation evaluations and theoretical considerations. The simulation results obtained herein prove that the proposed inverter outputs with sinusoidal waveforms and unity power factor currents are synchronized to the main voltage in utility power source grid. In this paper, the soft switching topology of high­frequency linked sinewave pulse modulation inverter is proposed and discussed.

  • PDF

Utililty-Interfaced High-Frequency Flyback Transformer Linked Sinewave Pulse Modulated Inverter for a Small Scale Renewable Energy Conditioner

  • Chandhaket, Srawouth;Koninish, Yoshihiro;Nakaoka, Mutsou
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.112-123
    • /
    • 2002
  • This paper presents a novel prototype of the utility AC power interfaced soft-switching sinewave pulse modulated inverter using the high-frequency flyback for the small scale distributed renewable energy power conditioner. The proposed cricuit with a high-frequency isolation link has a funtion of electrical isolation, which is more cost-effective and reliable for the small-scale distributed renwal energy utilization system from a safety point of riew. The discontinuous conduction mode(DCM) operation of the high-frequency flyback transformer is adopted to establish a simple and low-cost circuit configuration and control scheme. For the simplicity, the circuit operating principle is described on the basis of the modified conventional full bridge inverter, whitch is the typical conventional high-frequency full-bridge inverter employing the high requency flyback transformer to eanble the effictive function of the electrical isolation. Than, the new circuit topology of the unility-interfaced soft-switching sinewave pulse modulated inverter using IGBTs is proposed. The proposed cricuit topology is additionally composed of the auxiliary power regenerating snubber cricuits, which are also mathematically analyzed for the parameter desigen settings. Finally, the performance of the propose inverter is evaluated on the basis of computer-aid simulation. It is noted that the sinewave pulse modulated output current of the inverter is synchronous to the AC main voltage.

Battery Balancing Method using 2-Switch Flyback Converter (2-스위치 플라이백 컨버터를 이용한 배터리 밸런싱 기법)

  • Kim, Woo-Joon;Kim, Ui-Jin;Park, Seong-Mi;Park, Sung-Jun;Son, Gyung-Jong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.451-459
    • /
    • 2022
  • Recently, in accordance with the demand for a large capacity of a secondary battery according to an increase in the demand for energy storage devices, a modular series battery configuration is essential. Accordingly, various cell balancing techniques have been proposed to prevent high efficiency and performance degradation of the battery. In this paper, propose a battery voltage balancing topology consisting of a flyback DC/DC converter type of a SIMO (Single-Input-Multiple Output) two-switch configuration for a series battery configuration. The proposed topology shows a structure in which a DC/DC converter connected to each module and a battery cell share one transformer. The topology cell balancing operation is a principle in which the voltage balancing converter of the battery converges to the same value through a transformer that shares a magnetic flux with the cells constituting the module through a single high-frequency transformer. In this paper, the dynamic characteristics analysis of the proposed circuit using PSIM was based and it was verified through experiments on one module.

Alternately Zero Voltage Switched Forward, Flyback Multi-Resonant Converter Controller (교번으로 영전압 스위칭 되는 포워드, 플라이백 다중공진형 컨버터의 제어기)

  • 김창선
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.7-13
    • /
    • 2002
  • In the resonant converters which can provide high efficiency and high power density, the resonant voltage stress is about 4-5 times the input voltage. It needs the power switch with high ratings. This is a reason why the conduction loss is increased. In this paper, it proposes the alternately zero voltage switched forward, flyback multi resonant converter topology for reducing the voltage stress using alternately zero voltage switching technique. And the proposed AT forward MRC is experimentally considered about the loop gain with HP4194A network analyzer.

A study on a dielectric heating system for amplifying the resonant gain using the capacitance of electrodes (전극의 용량성분을 이용한 공진이득 증폭형 유전가열장치에 관한 연구)

  • Kim, Shin-Hyo;Lee, Chang-Woo;Bae, Han-Nah;Cho, Dae-Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.940-946
    • /
    • 2015
  • In this paper, we study a method that amplifies the output gain of a high voltage pulse using 300 kHz or higher frequency. We conducted a study on a method for amplifying the output gain using the resonance between the capacitance components of the load and the parasitic components of the circuit, instead of the conservative method for amplifying the pulse-amplitude by raising the voltage of the power stage. In particular, the method simplifies the circuit configuration throughout the appliance of flyback-type topology instead of the bridge-type. There are advantages that prevent damage from overload and the heat in the output circuit through the hard switching by amplifying the gain of the output voltage applying to the load as given by the capacitance component of the output electrode to the output pulse waveform. This study proposed a method to enhance the spatial and electrical efficiency of the contact-type heating device through the dielectric heating method applied to the field of medical and industrial heating.

Proposal of the Energy Recovery Circuit for Testing High-Voltage MLCC (고전압 MLCC 시험을 위한 에너지 회수 회로 제안)

  • Kong, So-Jeong;Kwon, Jae-Hyun;Hong, Dae-Young;Ha, Min-Woo;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.214-220
    • /
    • 2022
  • This paper proposes a test device designed for developing a high-voltage multilayer ceramic capacitor (MLCC). The proposed topology consists of an energy recovery circuit for charging/discharging capacitor, a flyback converter, and a boost converter for supplying power and a bias voltage application to the energy recovery circuit. The energy recovery circuit designed with a half-bridge converter has auxiliary switches operating before the main switches to prevent excessive current from flowing to the main switches. A prototype has been designed to verify the reliability of target capacitors following the voltage fluctuation with a frequency range below 65 kHz. To conduct high root mean square (RMS) current to the capacitor as a load, the MLCC test was conducted after the topology verification was completed through the film capacitor as a load. Through the agreement between the RMS current formula proposed in this paper and the MLCC test results, the possibility of its use was demonstrated for high-voltage MLCC development in the future.

A Flyback DC-DC Converter Employing a Synchronous Rectifier Driven by a New Voltage/Current Mixed Method (전압 전류 혼합구동방식을 적용한 동기정류기형 플라이백 DC-DC 컨버터)

  • Lee, Darl-Woo;Ahn, Tae-Young
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.472-477
    • /
    • 2006
  • This paper presents a new voltage/current mixed method for driving synchronous rectifiers (SR) adapted to the flyback topology. The synchronous rectifier driven by the proposed voltage/current mixed method can operate at a wide load range with high efficiency. The gate voltage of MOSFET in the synchronous rectifier can be easily controlled by changing the ratio of resistors, irrespective of a line and load fluctuation. A 200W (12V/17A) prototype converter was built and an efficiency of 93% was measured at 10A load current.