• Title/Summary/Keyword: High-temperature phase stability

Search Result 224, Processing Time 0.033 seconds

디스플레이 및 일시 기능 소자에 적용된 산화물 기반 박막 트랜지스터

  • Nam, Gung-Seok;Song, Min-Gyu;Gwon, Jang-Yeon
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.44-54
    • /
    • 2018
  • Oxide semiconductor has been spotlighted as a channel material of TFTs in AMLCD as an alternative to Si, due to high mobility ( > $5cm^2/Vs$). It is also one of the strong candidates for TFTs in AMOLED because of high bias stability at amorphous phase. Beyond the advantages mentioned above, oxide semiconductor has many strengths such as transparency, low fabrication temperature and relatively low fabrication cost. For those reasons, the application of oxide semiconductor is not limited to display but can be extended to new types of electronics, for example, transient electronics for human implantable devices. From this context, oxide materials that have been used as semiconductor and insulator at transient electronics are investigated respectively, and conductor and substrate candidates are also explained, since transient electronics require systematic consideration beyond individual oxide films.

The Effect of Lithia Addition on the Sodium Ion Conductivity of Vapor Phase Converted Na-β"-alumina/YSZ Solid Electrolytes

  • Sasidharanpillai, Arun;Kim, Hearan;Cho, Yebin;Kim, Dongyoung;Lee, Seungmi;Jung, Keeyoung;Lee, Younki
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.191-200
    • /
    • 2022
  • Na-β"-Al2O3 has been widely employed as a solid electrolyte for high-temperature sodium (Na) beta-alumina batteries (NBBs) thanks to its superb thermal stability and high ionic conductivity. Recently, a vapor phase conversion (VPC) method has been newly introduced to fabricate thin Na-β"-Al2O3 electrolytes by converting α-Al2O3 into β"-Al2O3 in α-Al2O3/yttria-stabilized zirconia (YSZ) composites under Na+ and O2- dual percolation environments. One of the main challenges that need to be figured out is lowered conductivity due to the large volume fraction of the non-Na+-conducting YSZ. In this study, the effect of lithia addition in the β"-Al2O3 phase on the grain size and ionic conductivity of Na-β"-Al2O3/YSZ solid electrolytes have been investigated in order to enhance the conductivity of the electrolyte. The amount of pre-added lithia (Li2O) precursor as a phase stabilizer was varied at 0, 1, 2, 3, and 4 mol% against that of Al2O3. It turns out that ionic conductivity increases even with 1 mol% lithia addition and reaches 67 mS cm-1 at 350 ℃ of its maximum with 3 mol%, which is two times higher than that of the undoped composite.

The Design of New Phase Noise Dielectric Resonator Parallel Feedback Oscillator (새로운 구조의 저 위상잡음 유전체 공진 병렬 궤환 발진기)

  • 전광일;박진우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7A
    • /
    • pp.947-954
    • /
    • 1999
  • A new low phase noise Dielectric Resonator Parallel Feedback Oscillator(DRPFO) that is proposed in this paper has a simple structure so that it can be fabricated in low cost and with high performance. The proposed DRPFO is in a feedback loop oscillator configuration, which is composed of a low noise amplifier, a power amplifier, a power attenuator, a power divider and a parallel resonator feedback element that consists of a dielectric resonator coupled with two microstrip lines. The measured phase noise of DRPFO was less than -81 dBc/Hz at offset frequency 1 kHz of 10.75 GHz carrier frequency, and the frequency stability of DRPFO was less than $\pm$200 kHz over the temperature range of -40$^{\circ}$C to +60$^{\circ}$C.

  • PDF

A Study on the Design and Fabrication of X-band Dielectric Resonator Oscillator using Phase Looked Loop (위상고정 회로를 이용한 X-band DRO 설계 및 제작에 관한 연구)

  • 성혁제;손병문;최근석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.715-722
    • /
    • 2000
  • In this paper, the PLDRO is designed and implemented for X-band. It is comprised of tunable high Q resonator with a varactor diode for frequency tuning, loop filter and a 1/8 prescaler which up to 10GHz. Also, it is implemented a TCXO and a VCO signal into the phase detector and achieved a highly stable signal source. From the measurement, the designed PLDRO has the output power of 2.5dBm at 8GHz and phase noise of -64.33dBc at 10KHz offset from carrier. Its characteristic is 26 dBc. This PLDRO has much better temperature stability.

  • PDF

Synthesis characterization of a high conductivity LSCF cathode materials and electrochemical studies for IT-SOFC (중.저온 고체산화물 연료전지용 고전도성 공기극 소재 합성 및 전기화학적 특성 평가)

  • Kim, Hyoshin;Lee, Jongho;Kim, Ho-Sung;Lee, Yunsung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.139-139
    • /
    • 2010
  • LSM is widely used as a cathode material in SOFC, because of its high electrochemical activity, good stability and compatibility with YSZ electrolyte at high temperature. However, LSM in traditional cathode materials will not generate a satisfactory performance at intermediate temperature. In order to reduce the polarization resistance of cell with the operating temperature of SOFC system, the cathode material of LSCF is one of the most suitable electrode materials because of its high mixed ionic and electronic conductivity. In this report, cathode material, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ powder for intermediate temperature SOFC was synthesized by Pechini method using the starting materials such as nitrate of La, Sr, Co and Fe including ethylene glycol, etc. As a result, the synthesized powder that calcined above $700^{\circ}C$ exhibits successfully perovskite structure, indicating phase-pure of LSCF. Moreover, the particle size, surface area, crystal structure and morphology of the synthesized oxide powders were characterized by SEM, XRD, and BET, etc. In order to evaluate the electrochemical performance for the synthesized powder, slury mixture using the synthesized cathode material was coated by screen-printing process on the anode-supported electrolyte which was prepared by a tape casting method and co-sintering. Finally, electrochemical studies of the SOFC unit cell, including measurements such as power density and impedance, were performed.

  • PDF

Characteristics of α-Tocopherol-loaded Nanostructured Lipid Carriers and their Stabilization Effect (α-Tocopherol을 함유한 Nanostructured Lipid Carriers의 특성과 안정화 효과)

  • Jun, Yoon Kyung;Lim, Yoon Mi;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.659-665
    • /
    • 2015
  • Loading of hydrophobic ${\alpha}$-tocopherol into nanostructured lipid carrier (NLC) was performed for improving its oxidative stability. First, various NLCs with different constituents and mixing ratios were prepared and their characteristics were investigated. While the stable NLCs were made when cetyl palmitate (CP) or glyceryl monosterate (GMS) was used as a solid lipid, the phase separation occurred in the NLCs consisting of stearic acid. Particle sizes of the NLCs were several hundreds of nanometers and the size decreased with increasing the ratio of solvent to lipid. It was examined from DSC thermogram and anisotropy test that the degree of crystallinity of the lipid phase decreased and the lipid matrix became less ordered when octyldodecanol, a long chain fatty alcohol, was added into the solid lipid. The oxidative stability of ${\alpha}$-tocopherol in NLC was remarkably improved compared to that in solution or emulsion under high temperature ($45^{\circ}C$) and UV radiation, which was verified through DPPH test and peroxide value measurement.

The Study on Dielectric Property and Thermal Stability of $Ta_2O_{5}$ Thin-films ($Ta_2O_{5}$ 커패시터 박막의 유전 특성과 열 안정성에 관한 연구)

  • Kim, In-Seong;Lee, Dong-Yun;Song, Jae-Seong;Yun, Mu-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.5
    • /
    • pp.185-190
    • /
    • 2002
  • Capacitor material utilized in the downsizing passive devices and dynamic random access memory(DRAM) requires the physical and electrical properties at given area such as capacitor thickness reduction, relative dielectric constant increase, low leakage current and thermal stability. Common capacitor materials, $SiO_2$, $Si_3N_4$, $SiO_2$/$Si_3N_4$,TaN and et al., used until recently have reached their physical limits in their application to several hundred angstrom scale capacitor. $Ta_2O_{5}$ is known to be a good alternative to the existing materials for the capacitor application because of its high dielectric constant (25 ~35), low leakage current and high breakdown strength. Despite the numerous investigations of $Ta_2O_{5}$ material, there have little been established the clear understanding of the annealing effect on capacitance characteristic and conduction mechanism, design and fabrication for $Ta_2O_{5}$ film capacitor. This study presents the structure-property relationship of reactive-sputtered $Ta_2O_{5}$ MIM capacitor structure processed by annealing in a vacuum. X-ray diffraction patterns skewed the existence of amorphous phase in as-deposited condition and the formation of preferentially oriented-$Ta_2O_{5}$ in 670, $700^{\circ}C$ annealing. On 670, $700^{\circ}C$ annealing under the vacuum, the leakage current decrease and the enhanced temperature-capacitance characteristic stability. and the leakage current behavior is stable irrespective of applied electric field. The results states that keeping $Ta_2O_{5}$ annealed at vacuum gives rise to improvement of electrical characteristics in the capacitor by reducing oxygen-vacancy and the broken bond between Ta and O.

Stability of W/O Nanoemulsions with Low Viscosity Prepared by PIC Method (PIC 방법으로 제조된 저점도 W/O 나노에멀젼의 안정성)

  • Cho, Wan Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.127-133
    • /
    • 2016
  • In this study, water-in-oil (W/O) nanoemulsions of water/Span 80-Nikkol BL 25/oil system were prepared by the PIC method at elevated temperature. This method allows the formation of finely dispersed W/O nanoemulsions with low viscosity in this system. However, macroemulsions rather than nanoemulsions were prepared by PIC method at room temperature. As a result of the significant change of interfacial tension with temperature, the emulsion droplet size decreases from $2{\mu}m$ to 100 nm with the increase in temperature from $30^{\circ}C$ to $80^{\circ}C$. The droplet size of nanoemulsions prepared at $80^{\circ}C$ was in the range of 50 ~ 200 nm and the internal phase content could reach as high as 15 wt%. The most stable nanoemulsion was formed in the vicinity of 7.0 of optimum HLB of the emulsifier mixture. The obtained nanoemulsions were stable without obvious change in droplet size in one month. This study provides valuable information for optimizing the formation of W/O nanoemulsions with low viscosity. These results suggest that W/O nanoemulsions of low viscosity could be useful for cosmetics with soft feeling.

Stability of Nano-emulsions Containing Fatty Acid and Fatty Alcohol (지방산 및 지방알코올을 함유한 나노에멀젼의 안정성)

  • Cho, Wan Goo;Kim, Kyung Ah;Jang, Seon Il;Cho, Byoung Ok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • In this study, low viscous O/W (oil-in-water) nano-emulsion with fatty acid and fatty alcohol was prepared by phase inversion emulsification method using Tween 80 and Span 80 widely used in cosmetic products. The particle size of the nano-emulsion was increased as increasing the concentration of fatty alcohol in oil phase. Adjusting the HLB of mixed surfactants, a stable nano-emulsion with a narrow size distribution was produced. Similar change in viscosity and electrical conductivity in both systems containing fatty acid and fatty alcohol was shown in the vicinity of the phase inversion point. However, high viscosity was shown in a wide range of different aqueous fraction unlike the system consisting only oils and surfactants. The low viscous nano-emulsion with less than 100 nm droplet size was stable for one month or more at room temperature. O/W nano-emulsions with low viscosity containing fatty acid or fatty alcohol produced by low-energy emulsification method can be widely used as formulations of cosmetics.

High Temperature Ablation Behaviors of Multilayer Coated Stainless Steel (다층 코팅된 Stainless Steel의 고온 내삭마특성)

  • Choi, Kwangsu;Yang, Wonchul;Kim, Yeong joo;Park, Joon Sik;Kim, Min Kyu
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.135-141
    • /
    • 2018
  • Stainless steel is being used in various industries such as automobile and aerospace for its cheap manufacturing cost and excellent mechanical properties. However, stainless steel failed to stably protect a specimen with a $Cr_2O_3$ protective layer at temperatures above $1000^{\circ}C$. Thus, improving the high temperature flame resistance of the specimen through additional surface coating was needed. In this study, multilayer coatings of YSZ and $Al_2O_3$ were performed on SUS 304 specimens using pack cementation coatings and thermal plasma spray. The multilayer coated specimen showed enhanced thermal properties due to the coated layers. The microstructures and phase stability are discussed together with flame conditions at $1350^{\circ}C$.