• Title/Summary/Keyword: High-temperature design

Search Result 2,757, Processing Time 0.031 seconds

A Design of Temperature Management System for Preventing High Temperature Failures on Mobility Dedicated Storage (모빌리티 전용 저장장치의 고온 고장 방지를 위한 온도 관리 시스템 설계)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2024
  • With the rapid growth of mobility technology, the industrial sector is demanding storage devices that can reliably process data from various equipment and sensors in vehicles. NAND flash memory is being utilized as a storage device in mobility environments because it has the advantages of low power and fast data processing speed as well as strong external shock resistance. However, flash memory is characterized by data corruption due to long-term exposure to high temperatures. Therefore, a dedicated system for temperature management is required in mobility environments where high temperature exposure due to weather or external heat sources such as solar radiation is frequent. This paper designs a dedicated temperature management system for managing storage device temperature in a mobility environment. The designed temperature management system is a hybrid of traditional air cooling and water cooling technologies. The cooling method is designed to operate adaptively according to the temperature of the storage device, and it is designed not to operate when the temperature step is low to improve energy efficiency. Finally, experiments were conducted to analyze the temperature difference between each cooling method and different heat dissipation materials, proving that the temperature management policy is effective in maintaining performance.

Thermal Design of High-power 5 Watt LEDs-based Searchlight (고출력 5 Watt LED기반 탐조등의 방열설계)

  • Lee, A Ram;Her, In Sung;Lee, Se-Il;Yu, Young Moon;Kim, Jong Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.594-599
    • /
    • 2014
  • The heat dissipation conditions of high-power 5 watt LEDs-based searchlight modules were optimized with varying LED bar'shape, materials, and ambient temperature. The LED junction temperature was estimated by using Computational Fluid Dynamics simulation. The optimal heat dissipation conditions were found as follows; LED bar' shape: L=80 mm, W=4 mm, t=10 mm, copper material, LED junction temperature of $116.6^{\circ}C$, ambient temperature of $50^{\circ}C$, total mass of 184 g, and shadowing area of $320mm^2$. The difference between the junction temperatures of our fabricated and simulated LEDs-based searchlight modules is about $3^{\circ}C$, which confirms the validity of our thermal simulation results.

The Heat Transfer Analysis of the First Stage Blade (발전용 가스터빈 1단 동익 열전달 해석)

  • Hong, Yong-Ju;Choi, Bum-Seog;Park, Byung-Gyu;Yoon, Eui-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.30-35
    • /
    • 2001
  • To get higher efficiency of gas turbine, The designer should have more higher turbine inlet temperature (TIT). Today, modem gas turbine having sophisticated cooling scheme has TIT above $1,700^{\circ}C$. In the korea, many gas turbine having TIT above $1,300^{\circ}C$ was imported and being operated, but the gas with high TIT above $1,300^{\circ}C$ in the turbine will give damage to liner of combustor, and blade of turbine and etc. So frequently maintenance for parts enduring high temperature was performed. In this study, the heat transfer analysis of cooling air in the internal cooling channel (network analysis) and temperature analysis of the blade (Finite Element Analysis) in the first stage rotor was conducted for development of the optimal cooling passage design procedure. The results of network analysis and FEM analysis of blade show that the high temperature spot are occured at the leading edge, trailing edge near tip, and platform. so to get more reliable performance of gas turbine, the more efficient cooling method should be applied at the leading edge and tip section. and the thermal barrier coating on the blade surface has important role in cooling blade.

  • PDF

Design and Implementation of High Performance System with Reduced Hardware Architecture to Convert a Color Tone (감소된 하드웨어 구조를 가지는 고성능 색조 변환 시스템의 설계 및 구현)

  • 문오학;이호남;이봉근;강봉순;홍창희
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.1-8
    • /
    • 2001
  • In this paper we propose high performance system with reduced hardware architecture to convert a color tone. Conversion for the color tone of a input image is necessary to calculate the color temperature of the image Conventional way of calculating the temperature uses algorithm using the method calculating 2-D chromaticity coordinates. But it requires bulky hardware[1]. This paper propose the color temperature calculation method about 1-D chromaticity coordinates that reduces the hardware complexity while keeping the performance of the 2-D color temperature algorithm . The proposed method is verified by fLCD-TV system using the Xilinx Virtex FPGA XCV 2000E-6BG560 that has 1344*806 resolution and requires a high-speed 65MHz operation.

  • PDF

Mid-Temperature Operation Characteristics of Commercial Reforming Catalysts: Comparison of Ru-Based and Ni-Based Catalyst (상용 개질촉매의 중온 영역 운전 특성: Ru 촉매와 Ni 촉매 비교)

  • KIM, YOUNGSANG;LEE, KANGHUN;LEE, DONGKEUN;LEE, YOUNGDUK;AHN, KOOKYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • Most of the reformer experiments have been conducted only in high-temperature operation conditions above 700℃. However, to design high efficiency solid oxide fuel cell, it is necessary to test actual reaction performance in mid-temperature (550℃) operation areas. In order to study the operation characteristics and performance of commercial reforming catalysts, a reforming performance experiment was conducted on mid-temperature. The catalysts used in this study are Ni-based FCR-4 and Ru-based RuA, RuAL. Experiments were conducted with a Steam-to-carbon ratio of 2.0 to 3.0 under gas hourly space velocity (GHSV) 2,000 to 5,000 hr-1. As a result, RuA and RuAL catalysts showed similar gas composition to the equilibrium regardless of the reforming temperature. However, the FCR-4 catalyst showed a lower hydrogen yield compared to the equilibrium under high GHSV conditions.

High Field Superconducting Magnet Optimal Design for Nuclear Magnetic Resonance (NMR) Applications (핵자기공명(NMR) 응용을 위한 고자장 초전도 마그네트의 최적화 설계)

  • 고락길;조영식;권영길;진홍범;배준한;심기덕;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.150-153
    • /
    • 2000
  • NMR researches are required high field and high homogeneous super-conducting magnet. Thus superconducting magnets for NMR applications are designed with minimization of coil winding volume satisfied constraints such as field strength, field homogeneity, etc. In this paper, we are discussed optimal design of high field super-conducting magnet for NMR applications. For a design example, we designed unshielded superconducting magnet for 600MHz NMR spectrometer with 100mm room temperature bore size and obtained 14.1011[T] field strength and 1.33 ppm field homogeneity.

  • PDF

Wide-angle optical design using high-resolution uncooled thermal detector

  • Lee, Jonghoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2017
  • In this paper, we propose efficient design and construction of an infrared wide angle optical system with low distortion utilizing a high resolution detector for automobile application. The operational convenience and the recognition ability have been improved significantly by applying the high resolution uncooled thermal detector with wide angle optical design. The active ahtermalization mechanism is implemented so that the adjustment of the optical component of the system is to be made automatically according to the temperature change by motorized control. The modulation transfer function (MTF) is about 50% at the Nyquist frequency close the diffraction limit. The distortion is less than 5% at the edge field. As a result, a high-resolution uncooled thermal optical system with wide field of view (FOV) is assembled, aligned and its performance is tested successfully.

Analysis of impact factors affecting on the stack effect in high-rise building (고층빌딩 연돌 현상의 영향인자 분석)

  • Oh, Jin-Hwan;Song, Doo-Sam;Yoon, Sung-Min;Nam, Yujin
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.95-101
    • /
    • 2016
  • Purpose: Recently, high-rise buildings are popular in korea due to high rate of land usage and cost performance in urban area. However, high-rise building causes several problems such as safety issues, cooling/heating load, stack effect, disaster prevention etc. The stack effect is one of the representative problems. Even though there are many researches on stack effect, there are few studies on design guideline considering local condition. Method: This study focuses on the change of pressure distribution according to the design factors which affects the airflow in high-rise residential buildings by simulation analysis. In this study, city, building floor, stairwell door leakage area, elevator door leakage area and changes of layout were considered ad the design factor. Result: The simulation results indicate that building height and ambient air temperature are significant design factor for stack effect.

Optimal Design of a High Speed Carbon Composite Air Spindle (고속 공기 주축부를 위한 복합재료 주축의 최적 설계)

  • Bang, Gyeong-Geun;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1767-1776
    • /
    • 2001
  • For the stable operation of high speed air spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are net appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, a high speed spindle composed of carbon fiber epoxy composite shaft and steel flange was designed for maximum critical speed considering minimum static deflection and radial expansion due to bending load and centrifugal force during high speed relation. The stacking angle and the stacking thickness of the composite shaft and the adhesive bonding length of the 7teel flange were selected through vibrational analysis considering static and thermal loads due to temperature rise.

Fundamental Study for Predicting Ship Resistance Performance Due to Changes in Water Temperature and Salinity in Korea Straits (대한해협에서의 수온 및 염도변화를 고려한 선박의 저항성능 예측을 위한 기초 연구)

  • Seok, Jun;Jin, Song-Han;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.418-426
    • /
    • 2015
  • Recently, shipping operators have been making efforts to reduce the fuel cost in various ways, such as trim optimization and bulb re-design. Furthermore, IMO restricts the hydro-dioxide emissions to the environment based on the EEDI (Energy Efficiency Design Index), EEOI (Energy Efficiency Operational Indicator), and SEEMP (Ship Energy Efficiency Management Plan). In particular, ship speed is one of the most important factors for calculating the EEDI, which is based on methods suggested by ITTC (International Towing Tank Conference) or ISO (International Standardization Organization). Many shipbuilding companies in Korea have carried out speed trials around the Korea Straits. However, the conditions for these speed trials have not been exactly the same as those for model tests. Therefore, a ship’s speed is corrected by measured environmental data such as the seawater temperature, density, wind, waves, swell, drift, and rudder angle to match the conditions of the model tests. In this study, fundamental research was performed to evaluate the ship resistance performance due to changes in the water temperature and salinity, comparing the ISO method and numerical simulation. A numerical simulation of a KCS (KRISO Container ship) with a free-surface was performed using the commercial software Star-CCM+ under three conditions that were assumed based on the water temperature and salinity data in the Korea Straits. In the simulation results, the resistance increased under low water temperature & high salinity conditions, and it decreased under high water temperature & low salinity conditions. In addition, the ISO method showed the same result as the simulation.