• Title/Summary/Keyword: High-temperature degradation

Search Result 866, Processing Time 0.029 seconds

Pyrolysis-Liquefaction of a Siberian Spruce Biomass (시베리아산 전나무 바이오매스의 열분해-액화반응)

  • Yoon, Sung-Wook
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.430-438
    • /
    • 2008
  • Siberian spruce, found in the northern temperature and boreal regions of the earth, is usable biomass as fuels. In this study, parameters of thermochemical degradation by pyrolysis-liquefaction reaction of siberian spruce such as the effect of reaction temperature, reaction time and degradation products and energy yields were investigated. The liquid products from pyrolysis-liquefaction of siberian spruce contained various kinds of cyclicketones, cresols, dimethyl phenols and benzenediols. Combustion heating value of liquid products from pyrolysis-liquefaction conversion processes was in the range of $7,650{\sim}7,800cal/g$. The energy yield in pyrolysis-liquefaction of siberian spruce was as high as 69.5% after 40min of reaction at $400^{\circ}C$. The liquid products from the thermochemical conversion of siberian spruce could be used as high octane value fuels and fuel additives.

The Evaluation of 2-25Cr-lMo Steels Degradation by the Electrochemical Polarization Method (전기화학적 분극특성을 이용한 2.25Cr-lMo 강의 열화도 평가)

  • 김지수;현양기;이재도;오세규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.314-319
    • /
    • 2001
  • Most parts of facilities in domestic petroleum plants and power plants are needed to be abandoned, repaired or replaced, because in Korea they were built in the 1960s and, they have been used under severe conditions and exposed corrosive environments. 2.25Cr- lMo steels have excellent high-temperature mechanical properties. Therefore, the material have been widely used as heat exchanger tubes, boiler headers and its tubes in such industries. But, those microstructural evolutions in high temperature such as precipitation and carbide coarsening give a reason to degrade the material. Especially, in case of this material, carbides induced embrittlement(CIE) is the primary reason for degrading mechanical properties at over 50$0^{\circ}C$. In this paper, we introduce a electrochemical polarization method for detecting CIE quantitatively.

  • PDF

Effect of High Temperature Aging Time on Mechanical Characteristics Degradation of STS 304 Steel (STS 304 강의 기계적 특성에 미치는 고온 열화 시간의 영향)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.380-385
    • /
    • 2017
  • Mechanical characteristics of the STS 304 which is heat resistance steel were investigated after artificial aging at $650^{\circ}C$ with 1,000 hours. Tensile test specimens and small test pieces were done artificial aging up to 1,000 hours in the high temperature atmospheric environment. The results present that as the aging time increased, tensile properties were deteriorated. In the case of failure mechanism, the configuration of the fractography presented drastic change from ductile to brittle with aging time. $M_{23}C_6$ carbide leading to the change of the mechanical properties and fracture mode of the aged STS 304 steel continuously precipitated along the grain boundaries of austenite microstructure.

Analysis of the Surface Degradation in UV-irradiated High-Temperature Vulcanized Silicone Rubber (자외선 조사된 HTV 실리콘 고무의 표면열화 분석)

  • 연복희;이태호;허창수;이종한
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.411-419
    • /
    • 2000
  • In this paper we have investigated the surface degradation by ultraviolet-irradiation in high-temperature vulcanized silicone rubber. Through the measurement of surface potential decay by corona-charging and of contact angle it is found that the change of surface electrostatic properties and the decrease of contact angle under UV-radiation. For the changes in micro-morphological and chemical structure of the UV-treated silicone rubber we utilized several analytical techniques such as SEM, ATR-FTIR,XPS. From this study it is shown that the chemical reactions(scissoring of side chain(S-$CH_3$) cross-linking and branching) occur on the surface of silicone rubber during the UV-irradiation. Also we obtained the results of the loss of low molecular weight chain by cross-linking and oxidation reaction.

  • PDF

Surface properties of epoxy/glass Eber composites by environmental conditions (사용 환경조건에 따른 Epoxy/Glass Fiber 복합재료의 표면특성)

  • 임경범;이백수;황명환;김윤선;유도현;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.279-284
    • /
    • 2000
  • In order to analysis the degradation process of epoxy/glass fiber for outdoor condition, FRP laminate was exposed to high temperature and water. Then the degradation process was evaluated by comparing contact angle, surface potential decay, and surface resistivity. For the change of wettability, the contact angle of thermal-treated specimen with the high temperature of $200^{\circ}C$ increased. But that of water-treated specimen decreased. The characteristic of surface potential decay shows the tendency of the remarkable decrease on water-treated specimens, but increase on thermal-treated specimen compared with untreated one. Also, for the surface resistivity, it shows the same trend compared with the change of contact angle.

  • PDF

Evaluation of Fracture Toughness($J_{IC}$) on 304 Stainless Steel Weldments Artificially Degraded under SCC Environment (SCC 분위기 하에서 장시간 인공열화된 304 스테인리스강 용접부의 파괴인성($J_{IC}$)평가)

  • 김성우;배동호;조선영;김철한
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.76-83
    • /
    • 1999
  • Fracture toughness({TEX}$J_{IC}${/TEX}) on 304 austenitic stainless steel weldments artificially degraded for long period under SCC environments were evaluated to investigate its reliability and environmental characteristics. Electro-chemical polarization tests were previously carried out to evaluate corrosion susceptiblility of weldment, and stress corrosion cracking was tested under various conditions of 3.5wt.% NaCl solution, the temperature of $25^{\circ}$C and $95^{\circ}$C, and oxygen concentration during 3000hours. From the results obtained, it was found that 304 stainless steel weldment was so susceptible under high temperature and high oxygen concentration of 3.5wt.% NaCl solution, and fracture toughness({TEX}$J_{IC}${/TEX}) was also considerably reduced by material degradation.

  • PDF

DC Voltage-Current Characteristics of a High Temperature Superconducting Conductor (고온초전도체의 DC 전압 - 전류 특성)

  • Woo Ryu-Kyung;Li Zhu-Yong;Ma Yang-Hu;Choi Byoung-Ju;Park Kwon-Bae;Oh Il-Sung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.49-53
    • /
    • 2006
  • A high temperature superconductor (HTS) has been developed for power applications such as power cables, fault current limiters and superconducting magnetic energy storage devices. For such applications it is required to understand the DC voltage-current characteristic of the HTS. which is important in analyzing AC loss and flux flow loss quantitatively. In this work, we have experimentally investigated influence of several factors, e.g. critical current density. degradation and AC external magnetic field, on the DC voltage-current characteristic. The measured results have been discussed in engineering application point of view.

A Study on the Intrinsic Degradation Behavior of LaNi5 (LaNi5의 intrinsic degradation 거동에 관한 연구)

  • Ahn, Hyo-Jun;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.2 no.1
    • /
    • pp.77-82
    • /
    • 1990
  • To investigate the effect of strains heat effect and thermal energy on the intrinsic degradation of $LaNi_5$, the changes of P-C-Isotherm curves under the condition of mainly applied one of the above factors were investigated. The revesible hydrogen storage capacity decreased by means of the hydrogenation at high temperature without cyclings or pressure induced cyclings with low thermal energy. The degree of degradation was more severe as the heat of hydrogenation reaction increased. Thus the intrinsic degradation of $LaNi_5$ depended upon lattice strain as well as thermal energy.

  • PDF

Evaluation of Material Degradation of 1Cr-1Mo-0.25V Turbine Casing Steel Aged Artificially by Isothermal Heat Treatment (등온열처리법에 의해 모의 열화된 1Cr-1Mo-0.25V 터빈케이싱 강의 재질열화 평가)

  • Ma, Young-Wha;Kim, Do-Hyung;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.22-26
    • /
    • 2010
  • Material degradation should be considered to assess integrity and residual life of high temperature equipments. However, the property data reflecting degradation are not sufficient for practical use. In this study, mechanical properties of 1Cr-1Mo-0.25V casting steel generally used for turbine casing were measured and variation of microstructure was observed. Degradation was simulated by isothermal heat treatment.

A Study on Degradation Behavior of 1Cr-1Mo-0.25V Steel (1Cr-1Mo-0.25V 강의 열화거동에 관한 연구)

  • 석창성;구재민;김동중;안하늘;박은수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.8-14
    • /
    • 2000
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important because mechanical properties of the components are degraded with time of service exposure in the high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, accelerated aging technique are needed to estimate and analyse the material degradation. In the this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C$. And tensile test, $k_{IC}$ test, hardness test and Scanning Electron Microscope analysis were performed in order to evaluate the degradation of 1Cr-1Mo-0.25V steels.

  • PDF