• Title/Summary/Keyword: High-temperature compression test

Search Result 136, Processing Time 0.045 seconds

Effect of High Temperature Degradation on Microstructure and High Temperature Mechanical Properties of Inconel 617 (Inconel 617의 고온열화에 따른 미세구조 및 고온 기계적 특성)

  • Jo, Tae-Sun;Lee, Seung-Ho;Kim, Gil-Su;Kim, Se-Hoon;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.268-272
    • /
    • 2007
  • Inconel 617 is a candidate tube material for high temperature gas-cooled reactors(HTGR). The microstructure and mechanical properties of Inconel 617 were studied after exposure at high temperature($1050^{\circ}C$). The dominant oxide layer was Cr-oxide. The internal oxide and Cr-depleted region were observed below the Cr-oxide layer. The depth of Cr-depleted zone and internal oxide increased with exposure time. The major phases of carbides are $M_{23}C_6\;and\;M_6C$. The composition of $M_{23}C_6\;and\;M_6C$ were determined to be Cr-rich and Mo-rich, respectively. $M_6C$ carbide is more stable than $M_{23}C_6$ at high temperature. From the results of high temperature compression test, there were no significant changes in hardness and yield strength upon increasing exposure time.

High Temperature Creep Behavior of Cr3C2 Composites (크롬-카바이드 복합체의 고온 크리프 거동)

  • 김지환;한동빈;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1219-1226
    • /
    • 1995
  • Creep behaviors of Cr3C2 composites containing 90 wt% Cr3C2 and 10 wt% Ni were studied at high temperature. Compression tests at 100$0^{\circ}C$ and bending tests at 100$0^{\circ}C$ and 105$0^{\circ}C$ were done in argon environment. In all test conditions primary and steady-state creep behaviors were observed. Stress exponent and activatiion energy were determined from the experimental data. By microstructural analysis of Cr3C2 composites after creep test, the separate agglomerations of Ni phase were observed. Numerical analysis was also studied to analyze bending creep behaviors of Cr3C2 by assumming different tensile and compressive creep behavior in a bending sample. From the analysis, it was found that the stress state at the compressive region as applied stress increased. The observed creep rates were compared with the predicted creep rates by estimating power-law creep parameters from bending test data.

  • PDF

High Temperature Deformation Behavior of Fe-base High Strength Alloys (고강도 Fe계 합금의 고온 변형 특성)

  • Kwon, Woon-Hyun;Choi, Il-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.938-946
    • /
    • 2008
  • Fe-base amorphous alloy and two crystalline phases composite were fabricated. The effect of temperature and strain rate on mechanical properties was evaluated utilizing compression test. Mixture of non-crystalline and crystalline phases were found using X-ray diffraction (XRD) and differential thermal analysis (DTA) tests. Based on glass transition temperature and crystallization temperature. compression tests were performed in the temperature ranging from $560^{\circ}C$ to $700^{\circ}C$ with $20^{\circ}C$ interval. Relationship between microstructure, including fracture surface morphology, and mechanical behavior was studied. The peak stress of Fe-base amorphous alloy was over 2GPa and expected to have a good wear resistance, but it is expected hard to deform because of low ductility. The peak stress and elongation of two crystalline phases composite was over 1GPa and about 20%, therefore it is possible to deform high strength wear resistant materials such as engine valve.

High Temperature Deformation Behavior of Al-Zn-Mg-Based New Alloy Using a Dynamic Material Model

  • Jang, Bong Jung;Park, Hyun Soon;Kim, Mok-Soon
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1249-1255
    • /
    • 2018
  • High temperature compression tests for newly developed Al-Zn-Mg alloy were carried out to investigate its hot deformation behavior and obtain deformation processing maps. In the compression tests, cylindrical specimens were deformed at high temperatures ($300-500^{\circ}C$) and strain rates of 0.001-1/s. Using the true stress-true strain curves obtained from the compression tests, processing maps were constructed by evaluating the power dissipation efficiency map and flow instability map. The processing map can be divided into three areas according to the microstructures of the deformed specimens: instability area with flow localization, instability area with mixed grains, and stable area with homogeneous grains resulting from continuous dynamic recrystallization (CDRX). The results suggest that the optimal processing conditions for the Al-Zn-Mg alloy are $450^{\circ}C$ and a strain rate of 0.001/s, having a stable area with homogeneous grains resulting from CDRX.

An Experimetal Study on Strength Characteristics of Mass Concrete Cast with High-Strength Concrete for Precast Application. (프리캐스트 콘크리트 적용을 위한 고강도 매스 콘크리트 부재의 강도 특성에 관한 실험적 연구)

  • Park, Jo-Hyun;Kim, Sung-Jin;Paik, Min-Su;Lee, Seung-Hoon;Park, Byung-Keun;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.49-52
    • /
    • 2007
  • Recently, as architectural concrete structures become high-rise and megastructured, concrete become high-strengthened and, by ensuring products of more stability, air compression and rationalization of construction are required. In general, product management test of precast concrete member, specimen for management cured in the same condition with precast concrete member is substitutively used for strength test. However, large cross-sectional precast concrete members such as columns show large temperature increase in manufacturing process not only by external heating but also by concrete itself's hydration heating. Therefore, it is expected that specimen for management to predict strength and compression strength of precast concrete member shows different temperature history and strength characteristics. Concerning this, in order to suggest temperature history and strength characteristics of high strength mass concrete suitable for precast concrete application, this study comprises the inclusive investigations on the relations between management specimen with similar temperature history and core strength, and the strength characteristics per member cross-section dimensional value and per water-bonding material ratio value.

  • PDF

An Experimental Study on Estimation of Strength in High Strength Concrete Structure Using Simple Adiabatic Curing (단열양생을 이용한 고강도 콘크리트 압축강도 추정에 관한 실험적 연구)

  • Cho Kyu Hyun;Kim Je Sub;Hwang Byung Jun;Gong Min Ho;Back Min Soo;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.450-453
    • /
    • 2004
  • The present study is a basic experiment on the estimation of the compression strength of high strength concrete, aiming at estimating the compression strength of mass test pieces of high strength concrete by giving the temperature hysteresis of the mass test pieces to managerial test pieces. Thus, this study made concrete test pieces in an optimal mix ratio for each strength level, and also created adiabatic curing tank and managerial test pieces. Then it carried out comparative analysis in relation to core strength and suggested equipment and a technique that can control the strength of high strength concrete mass more conveniently and accurately.

  • PDF

An Experimental Study on the Construction of CFT Column Over the High Temperature (CFT 기둥의 서중 시공 적용을 위한 기초적 연구)

  • 이장환;강용학;공민호;정근호;김진호;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1029-1034
    • /
    • 2003
  • The basic Physical properties, Slump, Slump Flow, Air content, Bleeding, and Settlement of concrete was investigateed to test Characteristic of Setting and to evaluate the relation between Model Specimen and Heat of hydration for construction Over the High Temperature (CFT). The objective of this study is to take the partial core after the cementation of Model Specimen, test the compression intensity and analyze the relation to Test Piece.

  • PDF

DRASTIC IMPROVEMENT OF THERMAL EFFICIENCY BY RAPID PISTON-MOVEMENT NEAR TDC

  • Moriyoshi, Y.;Sano, M.;Morikawa, K.;Kaneko, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.295-301
    • /
    • 2006
  • A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve high thermal efficiency, comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism were studied to avoid knocking with high compression ratio. Because reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to large heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adapted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving high thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in numerical simulations. Livengood-Wu integral, which is widely used to judge knocking occurrence, was calculated to verify the effect for the new concept. As a result, this concept can be operated at compression ratio of fourteen using a regular gasoline. A new single cylinder engine with compression ratio of twelve and TGV(Tumble Generation Valve) to enhance the turbulence and combustion speed was designed and built for proving its performance. The test results verified the predictions. Thermal efficiency was improve over 10% with compression ratio of twelve compared to an original engine with compression ratio of ten when strong turbulence was generated using TGV, leading to a fast combustion speed and reduced heat loss.

High Temperature Deformation Behavior of Ti-Al Intermetallic Compound and Orientation Distribution of Lamellae Structure (Ti-Al금속간화합물의고온변형거동및라멜라조직의결정방위분포)

  • Park Kyu-Seop;Kang Chang-Yong;Lee Keun-Jin;Chung Han-Shik;Jung Young-Guan;Fukutomi Hiroshi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.162-169
    • /
    • 2004
  • High temperature uniaxial compression tests in the alpha single phase region were carried out on the Ti -43mo1%Al intermetallic compound, in order to obtain oriented lamellar microstructure. The compression deformation temperatures and strain rates are from 1573k to 1623k and 1.0x10$^{-4}$ s to 5.0x10$^{-3}$ s, respectively. Fully lamellar microstructure was observed after the uniaxial compression deformation in a single phase region followed by cooling to room temperature. Lamellar colony diameter depended on strain rates and test temperatures. The diameter varied between 8601m and 300fm. Stress-strain curve showed a work softening and the size of lamellar colony diameter varied depending on peak stresses. This shows the occurrence of dynamic recrystallization. Texture measurements after the uniaxial compression deformation, showed the development of fiber during dynamic recrystallization. It is seen that the area for the maximum pole density existed in 35 degrees away from the compression plane. The texture sharpens with a decrease in strain rate

Axial compression mechanical properties of steel reinforced recycled concrete column exposure to temperatures up to 800℃

  • Chen, Zongping;Liang, Yuhan;Mo, Linlin;Ban, Maogen
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.731-746
    • /
    • 2021
  • The purpose of this paper is to investigate the axial bearing capacity and residual properties of steel reinforced recycled aggregate concrete (SRC) column after elevated temperature. A total of 48 SRC columns were designed for the static loading test after elevated temperature. The variables include replacement ratios, designed temperature, target duration, thicknesses of cover concrete, steel ratios and stirrup spacing. From this test, the mass loss ratio and stress load-deformation curve were obtained, and the influence of various parameters on residual bearing capacity were analyzed. ABAQUS was used to calculate the temperature field of specimens, and then got temperature damage distribution on the cross-section concrete. It was shown that increasing of the elevated temperatures leaded to the change of concrete color from smoky-gray to grayish brown and results in reducing the bearing capacity of SRC columns. The axial damage and mechanism of SRC columns were similar to those of reinforced natural aggregate concrete columns at the same temperatures. Finally, the calculation method of axial compressive residual bearing capacity of SRC columns recycled concrete columns after high temperature was reported based on the test results and finite element analysis.