• Title/Summary/Keyword: High-strength bolt connection

Search Result 51, Processing Time 0.025 seconds

An Experimental Study on the Structural Characteristics of Tension Joints with High-Strength Bolted Split-Tee Connection (고력볼트 스플릿-티 인장접합부의 구조성능에 관한 실험적 연구)

  • Choi, Sung Mo;Lee, Seong Hui;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.737-745
    • /
    • 2004
  • In general, most of the beam-to-column connections for steel structures are regarded as either rigid connections or pin connections. Recently, the concept of a semi-rigid connection was introduced for a correct analysis of steel structures. Several experimental and theoretical researches have been performed regarding the structural behaviors of frames and buildings with semi-rigid connections. The results are not well known, and structural frame/building has not been designed to introduce the concept of semi-rigid connections between a beam and column until this time. To resolve this, this research depends on design specifications prepared by other advanced countries for the design of buildings with semi-rigid connections. Such a specification, however, should incorporate domestic characteristics of steel material properties and load conditions. This paper deals with structural capacities and deformable behaviors for a split-T tensile connection with F10T high-strength bolts to investigate the structural characteristics of semi-rigid frames. The experimental parameters include the thickness of T-flanges, painted or not, preloaded or not, and load pushover pattern. A total of 20 specimens were fabricated and tested with a 300-ton UTM. The structural capacities and behavior for split-T tensile connections were evaluated on each research parameter.

Experimental Tests and Analytical Study for the Prediction of the Plastic Moment Capacity of an Unstiffened Top and Seat Angle Connection (무보강 상·하부 ㄱ형강 접합부의 소성휨모멘트 저항능력 예측을 위한 실험 및 해석적 연구)

  • Yang, Jae-Guen;Choi, Jung-Hwan;Kim, Hyun-Kwang;Park, Jae-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.547-555
    • /
    • 2011
  • An unstiffened top and seat angle connection is a type of partially restrained connection that is suitable for low- and medium-rise steel buildings. The plastic moment resisting capacity of such connection is needed in practical design, in addition to the accurate prediction of the initial rotational stiffness. Therefore, most of the studies conducted for the mentioned connections were performed to predict the initial stiffness and the plastic moment resisting capacity with varying geometric properties. The main parameters of such experimental tests were the thickness and high-strength bolt gauge distance of AISC LRFD-type A top and seat angle connections. Based on the test results, the analytical model was also proposed in this study. The applicability of the proposed model was verified by comparing the test results from this study with those of other studies.

An Experimental Study on Behavior of Field Splice Joints of Longitudinal Rib in Orthotropic Steel Decks (강상판 종리브 현장연결부의 실험적 거동 특성)

  • Choi, Dong Ho;Choi, Hang Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.621-629
    • /
    • 2001
  • This study consists of static and fatigue tests to evaluate the behavior on the field splice joint of longitudinal rib in orthotropic steel deck specimens. Specifically, static and influence surface tests are performed for the stress distribution at the scallop area and high-strength bolt connection of longitudinal rib to examine the existence of handhole cover plate and the effect of eccentric loads. The ultimate strength of the field splice joint of longitudinal rib is obtained. In fatigue tests, cracks are observed at the scallop in the lower level test and the catastrophic failure of longitudinal rib is occurred following the failure of handhole cover plate in the higher level test. This study gives a basis for the better understanding of the field splice joint of longitudinal rib.

  • PDF

Evaluation of the Bending Performance of a Modified Steel Grid Composite Deck Joint (격자형 강합성 바닥판의 수정된 이음부에 대한 휨성능 평가)

  • Shin, Hyun-Seop;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.38-47
    • /
    • 2013
  • For the joint connection of the precast steel grid composite decks, the prefabricated joint which is composed of concrete shear key and high-tension bolts was already proposed. In this study, for the purpose of increasing the bending stiffness and bending strength of the proposed prefabricated joint section details of the proposed joint are modified, and through experimental tests the bending performance, such as stiffness and strength of a modified joint, is compared with those of the proposed joint. Test and analysis results show that the shear cracks in the concrete shear key are clearly reduced by the strengthening of the shear key using shear studs and additional rebars. According to analysis results of the moment-curvature relationship, bending stiffness of the modified joint is about 47% greater than the stiffness of the proposed joint. Furthermore, the modified joint has about 32% greater bending strength than the proposed joint. Compared to specimens without the joint the modified joint has same or slightly higher bending strength, but about 37% lower bending stiffness.

Eccentric Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles (볼트접합 앵글을 사용한 PSRC 합성기둥의 편심 압축실험)

  • Kim, Hyeon Jin;Hwang, Hyeon Jong;Park, Hong Gun;Kim, Dong Kwan;Yang, Jong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.249-260
    • /
    • 2017
  • In order to investigate the structural performance of a novel prefabricated-SRC column using bolt-connected steel angles(PSRC column), eccentric axial loading tests were performed for six PSRC column specimens and two conventional SRC column specimens. The test parameters were the spacing and sectional configurations of lateral reinforcement, and eccentricity ratio of axial load. The test results showed that, due to high axial-stiffness of the angles located at the corners of the cross section, the compressive load-carrying capacity and deformation capacity of the PSRC specimens were greater than those of the SRC specimens in the large eccentricity ratio of axial load. Closely spaced lateral steel plates and Z-shaped lateral steel plates improved lateral confinement, which increased the load-carrying capacity of the PSRC specimens. The combined flexural and axial load-carrying capacity of the specimens by tests and nonlinear numerical analysis were greater than the predictions by current design codes. The numerical analysis agreed well with the test results including the initial stiffness, peak strength, and post-peak strength degradation.

A Study on the Characteristics of High-Tension Bolted Joints' Behavior due to Surface Condition (표면상태에 따른 고장력볼트 마찰이음부의 거동특성에 관한 연구)

  • Cho, Sun Kyu;Hong, Sung Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.421-430
    • /
    • 1997
  • In this study, the static and the fatigue tests were performed with high tension bolted joints, of which the surfaces were spread with inorganic zinc-primer after shot-blast, and milling surface, and steel-natural surface, difference of friction surface condition were examined by comparing the esults of tests. From the result of synthetical investigation of this study. it is proper that using the torque management method in order to introduce design axial force to blots, and the provision of specifications that initial axial forces must be 110% of design axial forces is proper. Decreasing ratio of axial forces to initial force is proportional to common lorgarithms of time progress, it converge constant value after 20 hours, and decreasing ratio is little related to the roughness of friction surface. Sliding coefficient of milling, spreading inorganic zinc-primer, just producting is great in order and sliding forces are dependent on the applied axial forces, but if the applied axial forces are great, sliding coefficient become small by a loss of roughness. So it is confirmed that relation between the applied axial forces and the sliding forces are not proportional linearly. From the result of estimation on fatigue strength, all specimens satisfy the specifications with B-grade and milling surface is lower than the others about 14% in fatigue strength because in milling surface lose the function of friction-types joints at lower number of cycles. From the result of eximination for the distribution area of compressive force, friction area near to inside bolt is wider in the direction of stress than near to outside. It is guessed that this situation occurs because outside bolts firstly change from the friction connection to the bearing connection.

  • PDF

Analysis about Flexural Strength of Steel Plate-Concrete Composite Beam using Folded Steel Plate (Cap) as Shear Connector (절곡 강판(Cap)을 전단연결재로 사용한 강판-콘크리트 합성보의 휨강도 분석)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.481-492
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, the SPC beam was composed of folding steel plates and concrete, without a headed stud. The folding steel plate was assembled by a high strength bolt instead of welding. To improve the workability in a field construction, a hat-shaped cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode to analyze the flexural strength of the SPC beam using a cap as the shear connector. Five specimens with shear connector types, protrusion length, and different thickness of steel plates were constructed and tested. The experimental results were analyzed through the relationship between the shear strength ratio and flexural strength in KBC 2009. The test results showed a shear strength ratio of more than 40 %. In the case of using a cap-like specimen as the shear connector, the flexural strength was 70% of the value calculated as a fully composite beam. In addition, the cap showed a smaller shear strength than the stud, but the cap served as a shear connection. When the thickness of the steel plate was taken as a variable, the steel plate exhibited a bending strength of approximately 70% compared to a fully formed steel plate, and exhibited similar deformation performance. Local buckling occurred due to incomplete composite behavior, but local buckling occurred at a 5% higher strength for a relatively thick steel plate. The buckling width also decreased by 15%.

Experimental Study of the End-plate Gap Effect on the Performance of Extended End-plate Type Splice (이음면 이격이 확장형 단부판 이음부 성능에 미치는 영향에 대한 실험적 연구)

  • Kim, Cheol Hwan;Lee, Myung Jae;Kim, Hee Dong;Kim, Sa Bin
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.427-438
    • /
    • 2016
  • This study is experimental research for the effect of gap at the end plate on the performance of extended end-plate type splice. For this research, simple beam type specimens by using extended end-plate type splice are planned. Main variables are the initial gap between end-plates, the installation of finger shim plate before the installation of high tension bolts, the final gap between end-plates, and the installation of finger shim plate after the installation of high tension bolts. The static loading tests results show that the maximum bending strength of splice is not dependent on the gap, but the vertical displacement, initial stiffness and elastic stiffness are affected by the gap. In addition to that, the possibility of brittle fracture is increased when the torque of high tension bolt is used to control the gap. Thus, careful consideration is needed in this case.

Erection Capability of Heavy Precast Frames with Metal Plates using Wet Concrete for Tolerance (톨러런스기반 플레이트 접합 장치를 사용한 고중량 RC보의 설치 성능)

  • Hong, Won-Kee;Nguyen, Van Tien;Nguyen, Manh Cuong;Nkundimana, Eric
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.12-13
    • /
    • 2021
  • Methods for the manufacture, erection, and assembly of heavy frame modules were proposed. Interferences among precast members were prevented by using bolted metal plates for dry precast beam-to-column joints during assembly with a clearance for tolerance implementing grouted concrete filler plates instead of metal filler plates. Clearances for tolerances were provided to avoid conflictions among components during erection phases. These gaps were, then, grouted by high-strength mortar. The constructability of new connections of a beam-to-column joint using bolted metal plates for precast structures was examined using a full-scale assembly test in which practical observations indicated that members could be aligned and placed accurately in both horizontal and vertical directions, leading to a fast and convenient assembling. Bolt holes of the endplate were properly aligned using couplers with 30 mm fastened length embedded in the columns. The assembly test demonstrated the erection safety and structural stability of the proposed joints that were without filler plates when they were subjected to heavy loads at the time of their erection. The facile and rapid assembly of precast beam-to-column connections with a 30 mm tolerance was observed. The proposed assembly method is rapid, sustainable, and resilient, replacing the conventional methods of concrete frame construction, offering a connection that can be used in constructing infrastructure, such as buildings and pipe-rack frames.

  • PDF

Experimental Study on RC Frame Structures with Non-Seismic Details Strengthened by Externally-Anchored Precast Wall-Panel Method (EPWM) (외부 앵커압착형 프리캐스트 벽체로 보강된 비내진 상세를 갖는 철근콘크리트 골조에 대한 실험적 연구)

  • Choi, Seung-Ho;Hwang, Jin-Ha;Lee, Deuck Hang;Kim, Kang Su;Kwon, Yong-Keun;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.451-458
    • /
    • 2015
  • The infill-wall strengthening method has been widely used for the seismic performance enhancement of the conventional reinforced concrete (RC) frame structures with non-seismic detail, which is one of the promising techniques to secure the high resisting capacity against lateral forces induced by earthquake. During the application of the infill-wall strengthening method, however, it often restricts the use of the structure. In addition, it is difficult to cast the connection part between the wall and the frame, and also difficult to ensure the shear resistance performances along the connection. In this study, an advanced strengthening method using the externally-anchored precast wall-panel (EPCW) was proposed to overcome the disadvantages of the conventional infill-wall strengthening method. The one-third scaled four RC frame specimens were fabricated, and the cyclic loading tests were conducted to verify the EPCW strengthening method. The test results showed that the strength, lateral stiffness, energy dissipation capacity of the RC frame structures strengthened by the proposed EPCW method were significantly improved compared to the control test specimen.