• 제목/요약/키워드: High-spin

검색결과 750건 처리시간 0.029초

스핀 밸브 Ta 하지층의 질소함유량 변화와 열처리 온도에 따른 자기적 특성 (Magnetic Properties of Spin Valve Ta Underlayer Depending on N2 Concentration and Annealing Temperature)

  • 최연봉;김지원;조순철;이창우
    • 한국자기학회지
    • /
    • 제15권4호
    • /
    • pp.226-230
    • /
    • 2005
  • 본 연구에서는 스핀밸브 구조에서 하지층으로 많이 사용되고 있는 Ta 층에 질소를 첨가하여 질소량에 따른 자기적 특성과 열처리 결과를 비교 검토하였다. 또한 하지층에 질소를 첨가하여 확산 방지막으로서 역할과 기판과 하지층과의 접착력을 측정하여 비교하였다. 사용된 스핀밸브는 Si($SiO_2$)/Ta(TaN)/NiFe/CoFe/Cu/CoFe/FeMn/Ta 구조이다. Ta 박막에 비해 TaN 박막의 질소량이 증가할수록 증착률은 감소하였고, 비저항과 표면 거칠기는 증가하였다. 고온에서 열처리 후 측정한 XRD 결과를 보면 Si/Ta 박막에서는 규소화합물이 생성된 반면 Si/TaN 박막에서는 규소화합물을 발견할 수 없었다. 자기저항비(MR)와 교환결합자장($H_{ex}$)은 질소량이 4.0 sccm 이상에서는 감소하였다. 열처리 결과 자기저항비는 하지층이 Ta인 시편과 질소량이 4.0 sccm까지 혼합된 TaN 시편은 $200^{\circ}C$까지는 약 $0.5\%$ 정도 증가하다가 감소하였다. 기판과 하지층과의 접착력을 측정한 결과 Ta 박막보다 질소량이 8.0 sccm인 TaN 박막인 경우 약 2배 강한 접착력을 보였다. 본 연구 결과에 의하면 하지층 증착 시 아르곤 가스에 3.0 sccm 정도의 질소 가스를 혼합하여 사용하면 자기적 특성에 크게 영향을 주지 않으면서 확산 방지막, 접착력 향상등의 이점을 얻을 수 있으리라 사료된다.

The Development of High Oxygen Pressures and the Stabilization of Unusual Oxidation States of Transition Metals

  • Gerard DEMAZEAU
    • 대한화학회지
    • /
    • 제42권1호
    • /
    • pp.135-140
    • /
    • 1998
  • High oxygen pressures appear an important tool in Solid State Chemistry. Two main routes can be developed: (i) the stabilization of thermally unstable oxides, used as precursors, in order to open the synthesis of new materials, (ii) the stabilization of the highest oxidation states of transition metals. This paper is essentially devoted to this second research axis. The methodology developed for preparing new oxides containing Fe(Ⅴ), Ir(Ⅵ), high spin Fe(Ⅳ) and Cu(Ⅲ) is described.

  • PDF

말초신경질환에서 자기공명영상의 진단적 가치 (The Value of MRI in Diagnosis of Peripheral Nerve Disorders)

  • 이한영;이장철;김일만;이창영;손은익;김동원;임만빈
    • Journal of Korean Neurosurgical Society
    • /
    • 제30권9호
    • /
    • pp.1120-1126
    • /
    • 2001
  • Objective : The development of magnetic resonance neurography(MRN) has made it possible to produce highresolution images of peripheral nerves themselves, as well as associated intraneural and extraneural lesions. We evaluated the clinical application and utility of high-resolution MRN techniques for the diagnosis and treatment of a variety of peripheral nerve disorder(PND)s. Material and Method : MRN images were obtained using T1-weighted spin echo, T2-weighted fast spin echo with fat suppression, and short tau inversion recovery(STIR) fast spin-echo pulse sequences. Fifteen patients were studied, three with brachial plexus tumors, five with chronic entrapment syndromes, and seven with traumatic peripheral lesions. Ten patients underwent surgery. Results : In MRN with STIR sequences of axial and coronal imagings, signals of the peripheral nerves with various lesions were detected as fairly bright signals and were discerned from signals of the uninvolved nerves. Increased signal with proximal swelling and distal flattening of the median nerve were seen in all patients of carpal tunnel syndrome. Among the eight patients with brachial plexus injury or tumors, T2-weighted MRN showed increased signal intensity in involved roots in five, enhanced mass lesions in three, and traumatic pseudomeningocele in three. Other associated MRI findings were adjacent bony signal change, neuroma, root adhesion and denervated muscle atophy with signal change. Conclusion : MRN with high-resolution imaging can be useful in the preoperative evaluation and surgical planning in patients with peripheral nerve lesions.

  • PDF

Study of Energy Level Alignment at the Interface of P3HT and PCBM Bilayer Deposited by Electrospray Vacuum Deposition

  • Kim, Ji-Hoon;Hong, Jong-Am;Seo, Jae-Won;Kwon, Dae-Gyoen;Park, Yong-Sup
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.134-134
    • /
    • 2012
  • We investigated the interface of poly (3-hexylthiophene) (P3HT) and C61-butyric acid methylester (PCBM) by using photoelectron spectroscopy (PES). These are the most widely used materials for bulk heterojunction (BHJ) organic solar cells due to their high efficiency. Study of the BHJ interfaces is difficult because the organic films are typically prepared by spin coating in ambient conditions. This is incompatible with the interface electronic structure probes such as PES, which requires ultrahigh vacuum conditions. Study of interface requires gradual deposition of thin films that is also incompatible with the spin coating process. In this work, we used electrospray vacuum deposition (EVD) technique to deposit P3HT and PCBM in high vacuum conditions. EVD allows us to form polymer thin films onto ITO substrate in a step-wise manner directly from solutions and to use PES without exposing the sample to the ambient condition. Although the morphology of the EVD deposited P3HT films observed by optical and atomic force microscopes is quite different from that of the spin coated ones, the valence region spectra were similar. PCBM was deposited on the P3HT film in a similar manner and the energy level alignment between these two materials was studied. We discuss the relation between Voc of P3HT:PCBM solar cell and HOMO-LUMO energy offset obtained in this study.

  • PDF

Post Annealing Effects on Iron Oxide Nanoparticles Synthesized by Novel Hydrothermal Process

  • Kim, Ki-Chul;Kim, Young-Sung
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.179-184
    • /
    • 2010
  • We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.

Heme 단백질의 Model로서의 Hemin 착물에 관한 $^1H$ NMR 연구 ($^1H$ NMR Study of mono-and di-cyanide ligated Hemin Complexes as Models of Hemoproteins)

  • 이강봉;김남준;권지혜;이재성;최영상
    • 분석과학
    • /
    • 제7권4호
    • /
    • pp.505-515
    • /
    • 1994
  • DMSO(dimethylsuloxide-$d_6$) 용액 속에 존재하는 CN/CN 리간드의 hemin 착물과 CN/DMSO의 hemin 착물이 $^1H$ NMR로 기록되어지고 분석되어졌다. Hemin으로의 CN 착물화 과정은 온도에 따라 변화함을 NMR 스펙트럼이 보여 주며, 한 개의 CN 리간드에서 두 개의 CN 리간드착물로 바뀌는 과정의 열역학함수는 ${\Delta}H^{\circ}=736.6cal/mol$${\Delta}S^{\circ}=16.4eu$인 흡열과정을 나타낸다. CN/DMSO의 hemin 착물은 Curie behavior로부터의 벗어남은 high-spin 성격의 존재를 나태내고, 이는 Fe-DMSO 결합이 순간적으로 깨짐을 의미하며, 이러한 CN/DMSO hemin 착물이 한 개의 axial ligand가 약한 heme 단백질의 전자 및 분자구조의 model complex로 작용할 수 있음을 보여 준다.

  • PDF

High Resolution 3D Magnetic Resonance Fingerprinting with Hybrid Radial-Interleaved EPI Acquisition for Knee Cartilage T1, T2 Mapping

  • Han, Dongyeob;Hong, Taehwa;Lee, Yonghan;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권3호
    • /
    • pp.141-155
    • /
    • 2021
  • Purpose: To develop a 3D magnetic resonance fingerprinting (MRF) method for application in high resolution knee cartilage PD, T1, T2 mapping. Materials and Methods: A novel 3D acquisition trajectory with golden-angle rotating radial in kxy direction and interleaved echo planar imaging (EPI) acquisition in the kz direction was implemented in the MRF framework. A centric order was applied to the interleaved EPI acquisition to reduce Nyquist ghosting artifact due to field inhomogeneity. For the reconstruction, singular value decomposition (SVD) compression method was used to accelerate reconstruction time and conjugate gradient sensitivity-encoding (CG-SENSE) was performed to overcome low SNR of the high resolution data. Phantom experiments were performed to verify the proposed method. In vivo experiments were performed on 6 healthy volunteers and 2 early osteoarthritis (OA) patients. Results: In the phantom experiments, the T1 and T2 values of the proposed method were in good agreement with the spin-echo references. The results from the in vivo scans showed high quality proton density (PD), T1, T2 map with EPI echo train length (NETL = 4), acceleration factor in through plane (Rz = 5), and number of radial spokes (Nspk = 4). In patients, high T2 values (50-60 ms) were seen in all transverse, sagittal, and coronal views and the damaged cartilage regions were in agreement with the hyper-intensity regions shown on conventional turbo spin-echo (TSE) images. Conclusion: The proposed 3D MRF method can acquire high resolution (0.5 mm3) quantitative maps in practical scan time (~ 7 min and 10 sec) with full coverage of the knee (FOV: 160 × 160 × 120 mm3).