• Title/Summary/Keyword: High-speed vehicle

Search Result 1,293, Processing Time 0.028 seconds

A Study on the Propagation Model according to the Geometric Structures of Roads (도로의 기하구조에 따른 전파모델 연구)

  • Kim, Song-Min
    • 전자공학회논문지 IE
    • /
    • v.46 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • This study was to simulate it that the sending receiving vehicles run on the general national roads with the one-way two-lanes at 80[km/h] speed. This study was to select 280[m] radius of curvature based on the statistical data with high rate of traffic accidents, 140[m] length of direct roads considering the stopping stadia, 90[m] length of curve, and 8 points of curved roads at 11.25[m] intervals. As a result above, when the distance between the sending and receiving vehicles became more than 111[m], the propagation path of reflected wave by the adjacent vehicles became longer than the propagation path of reflected wave by the left/right reflectors because the number of repeated reflection increased. In this study, the repeated reflection for the propagation's reach to the receiving vehicles was about $1{\sim}2$[times] as it supposed it less than 111[m]. Accordingly, it found out that the propagation path of reflected wave received through the left/right reflectors was about $1{\sim}1.5[m]$ larger than the reflected wave produced by the adjacent vehicles regardless of lanes on which the sending and receiving vehicles were located.

Implementation of FlexRay Systems for Vehicle Appliacations (차량 내 통신을 위한 FlexRay 시스템 구현)

  • Jeon, Chang-Ha;Lee, Jae-Kyung;Jang, In-Gul;Chung, Jin-Gyun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.182-184
    • /
    • 2009
  • FlexRay is a new standard of network communication system which provides a high speed serial communication, time triggered bus and fault tolerant communication between electronic devices for future automotive and ship applications. FlexRay communication controller(CC) is the core of the FlexRay protocol specification. In this paper, we first design the FlexRay CC protocol specification and function parts using SDL(Specification and Description Language). Then, the system is re-designed using Verilog HDL based on the SDL source. The FlexRay CC system was synthesized using Samsung $0.35{\mu}m$ technology. It is shown that the designed system can operate in the frequency range above 80 MHz. In addition, to show the validity of the designed FlexRay system, the FlexRay system is combined with sound source localization system in Robot applications. The combined system is implemented using ALTERA Excalibur ARM EPXA4F672C3. It is shown that the implemented system operates successfully.

  • PDF

발사체 추력백터제어 구동장치용 컴퓨터 하드웨어 설계

  • Park, Moon-Su;Lee, Hee-Joong;Min, Byeong-Joo;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.56-64
    • /
    • 2004
  • In this research, design results of computer hardware which control solid motor movable nozzle thrust vector control(TVC) actuator for Korea Space Launch Vehicle I(KSLV-I) are described. TVC computer hardware is the equipment which has jobs for receiving control commands from Navigation Guidance Unit(NGU) and then actuating TVC actuator. Also, it has ability to communicate with other on board or ground equipments. Computer hardware has a digital signal processor as the main processor which is capable of high speed calculating ability of control algorithm, so it can have more stability, reliability and flexibility than the previous analog controller of KSR-III. Target board was designed for on board program development and then first prototype hardware was developed. Top level system design criteria, hardware configurations and ground support equipment of TVC computer system are described.

  • PDF

Developing High Altitude Long Endurance (HALE) Solar-powered Unmanned Aerial Vehicle (UAV) (고고도 장기체공 태양광 무인기 개발)

  • Hwang, SeungJae;Kim, SangGon;Lee, YungGyo
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • Korea Aerospace Research Institute (KARI) is developing an electric-driven HALE UAV in order to secure system and operational technologies since 2010. Based on the 5 years of flight tests and design experiences of the previously developed electric-driven UAVs, KARI has designed EAV-3, a solar-powered HALE UAV. EAV-3 weighs 53 kg, the structure weight is 21 kg, and features a flexible wing of 19.5 m in span with the aspect ratio of 17.4. Designing the main wing and empennage of the EAV-3 the amount of the bending due to the flexible wing, 404 mm at 1-G flight condition based on T-800 composite material, and side wind effects due to low cruise speed, V_cr = 6 m/sec, are carefully considered. Also, unlike the general aircraft there is no center of gravity shift during the flight. Thus, the static margin cuts down to 28.4% and center of gravity moves back to 31% of the Mean Aerodynamic Chord (MAC) comparing to the previously developed scale-down HALE UAVs, EAV-2 and EAV-2H, to minimize a trim drag and enhance a performance of the EAV-3. The first flight of the EAV-3 has successfully conducted on the July 29, 2015 and the test flight above the altitude 14 km has efficiently achieved on the August 5, 2015 at the Goheung aviation center.

BATHYMETRIC MODULATION ON WAVE SPECTRA

  • Liu, Cho-Teng;Doong, Dong-Jiing
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.344-347
    • /
    • 2008
  • Ocean surface waves may be modified by ocean current and their observation may be severely distorted if the observer is on a moving platform with changing speed. Tidal current near a sill varies inversely with the water depth, and results spatially inhomogeneous modulation on the surface waves near the sill. For waves propagating upstream, they will encounter stronger current before reaching the sill, and therefore, they will shorten their wavelength with frequency unchanged, increase its amplitude, and it may break if the wave height is larger than 1/7 of the wavelength. These small scale (${\sim}$ 1 km changes is not suitable for satellite radar observation. Spatial distribution of wave-height spectra S(x, y) can not be acquired from wave gauges that are designed for collecting 2-D wave spectra at fixed locations, nor from satellite radar image which is more suitable for observing long swells. Optical images collected from cameras on-board a ship, over high-ground, or onboard an unmanned auto-piloting vehicle (UAV) may have pixel size that is small enough to resolve decimeter-scale short gravity waves. If diffuse sky light is the only source of lighting and it is uniform in camera-viewing directions, then the image intensity is proportional to the surface reflectance R(x, y) of diffuse light, and R is directly related to the surface slope. The slope spectrum and wave-height spectra S(x, y) may then be derived from R(x, y). The results are compared with the in situ measurement of wave spectra over Keelung Sill from a research vessel. The application of this method is for analysis and interpretation of satellite images on studies of current and wave interaction that often require fine scale information of wave-height spectra S(x, y) that changes dynamically with time and space.

  • PDF

Development of Communication Module Based on IEEE 802.11a/g for u-TSN Service (u-TSN서비스를 위한 IEEE 802.11a/g 기반 통신모듈 개발)

  • Bae, Jeong-Kyu;Woo, Ri-Na-Ra;Song, Jung-Hoon;Ahn, Tae-Sik;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.117-124
    • /
    • 2009
  • In this paper, we have developed communication modules for ubiquitous transportation sensor network (u-TSN). The developed module can be used for intelligent transportation services. The developed systems are based on IEEE 802.11a and IEEE 802.11g technologies for vehicle and infrastructure systems, respectively. We have found that the throughput for the developed systems is at maximum around 15 Mbps. It is reduced to 10 Mbps at a long distance and high speed condition. The performance is enough to support traffic control services in dense traffic condition.

A Study of High Precision Position Estimator Using GPS/INS Sensor Fusion (GPS/INS센서 융합을 이용한 고 정밀 위치 추정에 관한 연구)

  • Lee, Jeongwhan;Kim, Hansil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.159-166
    • /
    • 2012
  • There are several ways such as GPS(Global Positioning System) and INS (Inertial Navigation System) to track the location of moving vehicle. The GPS has the advantages of having non-accumulative error even if it brings about errors. In order to obtain the position information, we need to receive at least 3 satellites information. But, the weak point is that GPS is not useful when the 혠 signal is weak or it is in the incommunicable region such as tunnel. In the case of INS, the information of the position and posture of mobile with several Hz~several hundreds Hz data speed is recorded for velocity, direction. INS shows a very precise navigational performance for a short period, but it has the disadvantage of increasing velocity components because of the accumulated error during integration over time. In this paper, sensor fusion algorithm is applied to both of INS and GPS for the position information to overcome the drawbacks. The proposed system gets an accurate position information from experiment using SVD in a non-accessible GPS terrain.

A Study on Link Analysis of Telemetry Rocket-borne Antenna (텔레메트리 로켓 탑재 안테나의 회선 분석에 관한 연구)

  • 김성완;황수설;이재득
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.311-318
    • /
    • 2004
  • It is required to design the RF link with sufficiently stable signal margin to minimize bit errors and improve the quality of received data in the telemetry system modulated digitally like PCM/FM. In case of the vehicle flying at a high speed, the variation of the gain pattern between transmitting and receiving antenna and the fee space loss due to flight distance cause the fluctuation of link. In this paper, KSR(Korea Sounding Rocket)- III, the first domestic liquid rocket which was successfully launched in Nov. 2002 is introduced. The SNR(signal-to-noise ratio) variation of the telemetry signal which was measured at S-band ground station, the one which was simulated considering the flight trajectory, and the attitude variation such as roll, pitch and yaw are compared, analyzed, and agree very well. In addition, two virtual flying situations are simulated and evaluated-only one antenna is equipped in one case, and rocket is roll-free in the other.

A Study for Applying Thermoelectric Module in a Bogie Axle Bearing (철도차량 차축 베어링 발열부의 열전발전 적용에 대한 기초연구)

  • Choi, Kyungwho;Kim, Jaehoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.255-262
    • /
    • 2016
  • There has been intense research on self-diagnosis systems in railway applications, since stability and reliability have become more and more significant issues. Wired sensors have been widely used in the railway vehicles, but because of the difficulty in their maintenance and accessibility, they ar not considered for self-diagnosis systems. To have a self-monitoring system, wireless data transmission and self-powered sensors are required. For this purpose, a thermoelectric energy harvesting module that can generate electricity from temperature gradient between the bogie axle box and ambient environment was introduced in this work. The temperature gradient was measured under actual operation conditions, and the behavior of the thermoelectric module with an external load resistance and booster circuits was studied. The proposed energy harvesting system can be applied for wireless sensor nodes in railroad vehicles with optimization of thermal management.

Study on the Application of the Electric Drive System of Fuel Pump for Diesel Engine of Commercial Vehicle using HILS (HILS기반 상용차 디젤엔진용 연료펌프의 전기구동 시스템 적용에 관한 연구)

  • Ko, Youngjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • Fuel injection pressure has steadily increased in diesel engines for the purpose of improving fuel efficiency and cleaning exhaust gas, but it has now reached a point, where the cost for higher pressure does not warrant additional gains. Common rail systems on modern diesel engines have fuel pumps that are mechanically driven by crankshaft. The pumps actually house two pumping module inside: a low pressure pump component and a high pressure pump component. Part of the fuel compressed by the low pressure component returns to the tank in the process of maintaining the pressure in the common rail. Since the returning fuel represents pumping loss, fuel economy improves if the returned fuel can be eliminated by using a properly controled electrical fuel pump. As the first step in developing an electrical fuel pump the fuel supply system on a 6 liter diesel engine was modeled with AMESim to analyze the workload and the fuel feed rate of the injection pump, and the results served as basis for selecting a suitable servo motor and a reducer to drive the pump. A motor controller was built using a DSP and a program which controls the common rail pressure using a proportional control method based on the target fuel pressure information from the engine ECU. A test rig to evaluate performance of the fuel pump is implemented and used to show that the newly developed electrically driven fuel pump can satisfy the fuel flow demand of the engine under various operating conditions when the rotational speed of the pump is adequately controlled.