• Title/Summary/Keyword: High-speed Machining

Search Result 631, Processing Time 0.023 seconds

Characteristics of RC Circuit with Transistors in Micro-EDM (트랜지스터 부착 RC 방전회로의 마이크로 방전가공 특성)

  • Cho Pil Joo;Yi Sang Min;Choi Deok Ki;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.44-51
    • /
    • 2004
  • In a micro-EDM, it is well known that an RC circuit is suitable as a discharge circuit because of its low pulse width and relatively high peak current. To increase machining speed without changing unit discharge energy, charge resistance should be decreased. But, when the resistance is very low, continuous (or normal) arc discharge occurs, electrode wear increases and machining speed is reduced remarkably. In this paper, an RC circuit with transistors is used in a micro-EDM. Experimental results show that the RC circuit with transistors can cut off a continuous (o. normal) arc discharge effectively if the duty factor and switching period of the transistor are set up optimally. Through experiments with varying charge resistances, it is shown that the RC circuit with transistors has about two times faster machining speed than that of an RC circuit.

Characteristics of damaged layer in high speed end milling (고속 엔드밀 가공에서 가공변질층의 특성)

  • 김동은
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.326-331
    • /
    • 2000
  • In this study, residual stress was investigated experimentally to evaluate damaged layer in high-sped machining. In machining difficult-to-cut material, residual stress remaining in machined surface was mainly speared as compressive stress. The scale of this damaged layer depends upon cutting speed, feed per tooth and radial cutting depth. Damaged layer was measured by optical microscope. The micro-structure of damaged layer was a mixed maternsite and austenite. depth of damaged layer is increased with increasing of cutting temperature, cutting force and radial depth. On the other hand, that is slightly decreased with decreasing of cutting force. The increase of tool wear causes a shift of the maximum residual stress in machined surface layer.

  • PDF

Dynamic Analysis of the High-Speed Spindle Structure for Machining Center (머시닝센터용 고속주축 구조물의 동특성 해석)

  • 송승훈;권오철;장낙영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.958-968
    • /
    • 1994
  • This paper presents a dynamic analysis of the high-speed spindle system for vertical machining center using finite techniques. The computed natural frequencies are compared with the measured frequencies obtained from experimental modal analysis. The results show that the bending and twisting deformations of the spindle housing dominate in the lowest modes owing to low dynamic stiffness of the housing structure. The design parameters in the analysis are : (a) panel thickness of the housing (b ) height of the housing, and (c) spindle-to-column distance of the housing. Through sensitivity analysis and optimizing simulation considering design constraints, an optimal design of the spindle system has been obtained.

  • PDF

Shape Design and Machinability Evaluation of Flat End mill for High Speed Machining of GC250 Material (회주철(GC250)의 고속가공을 위한 엔드밀공구의 형상 설계 및 가공성 평가)

  • 이상용;김전하;강명창;김정석;강호연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.292-296
    • /
    • 2002
  • In the present investigation, the improvement of processing efficiency in the high speed machining of GC250 is explored. This study is to evaluate the tool performance in difficult-to-material using the new developed tool. Tool performance evaluation are conducted by tool wear, surface roughness, chattering in machined surface. The tool wear of A type was smaller than B type. In type B tool the chatter mark was observed in machined surface. The good surface roughness was obtained in type A tool. Consequently, the tool performance of A type is better than B type.

  • PDF

Evaluation of Machinability by Cutting Environments in High-Speed Machining of Difficult-to-cut Materials(Test for Tool Life Using Compressed Chilly Air Cooling) (난삭성 재료의 가공환경변화에 따른 고속가공 특성 평가(압축공기냉각에 의한 공구수명 평가))

  • 김석원;안철수;이득우
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.158-163
    • /
    • 2000
  • High speed machining of difficult-to-cut materials generates the concentrated thermal/frictional damage at the cutting edge of the tool and rapidly decreases the tool life. In this paper, the cutting environments, such as dry, fluid coolant, and compressed chilly air coolant, were investigated to improve the tool life. For this study, the compressed chilly air system was manufactured. The experiments were performed for various difficult-to-cut materials and various coated tools. The effectiveness of the developed methods on the basis of tool life was estimated. The results show that the cutting environment using compressed chilly air coolant provided better tool life than using the fluid coolant or using the dry.

  • PDF

The Characteristics of High-Speed Machining of Aluminum Wall Using End-Mill (엔드밀을 이용한 알루미늄 측벽 형상의 고속가공 특성)

  • 이우영;최성주;김흥배;손일복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.912-916
    • /
    • 2000
  • The term ‘High Speed Machining’has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry fur the machining of light alloys, notably aluminium. In recent you, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. And the end mill is an important tool in the milling process. A typical examples for the end mill is the milling of pocket and slot in which a lot of material is removed from the workpiece. Therefore the proper selection of cutting parameter fur end milling is one of the important factors affecting the cutting cost. The one of the advantages of HSM is cutting thin-walled part of light alloy like Al(thinkness about 0.1mm). In this paper, firstly, we study characteristics of HSM, and then, we choose the optimal parameters(cutting forces) to cut thin-walled Al part by experiment.

  • PDF

A study on the Tool Path Generation of High-Speed Machining by the Distortion of Original Tool Path (지령 경로의 왜곡에 의한 고속가공 경로의 생성에 관한 연구)

  • 이철수;이제필
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.15-28
    • /
    • 1998
  • Recently may investigations have been studied on the high-speed machining by using machine tools. A CNC machine tool makes some tool path errors caused by software acceleration/deceleration. The faster a cutting feedrate is, the bigger the tool path errors are. Some known methods reduce these kinds of errors, but they make the total cutting time increased. This paper presents a feed-forward algorithm that can be generated by distorting the original tool path, and reduces the tool path errors and the total cutting time. The algorithm to generate a new tool path is represented as following; 1)calculating each distance of software acceleration/deceleration between two adjacent blocks, 2) estimating the distorted distance which is the adjacent-ratio-constant(k1, k2) multiply the distance of software acceleration/deceleration, 3) generating a 3-degree Bezier curve approximating the distorted tool path, 4) symmetrically transforming the Bezier curve about the intersection point between two blocks, and 5) connecting the transformed Bezier curve with the original tool path. The algorithm is applied to FANUC 0M. The study is to promote the high-precision machining and to reduce the total cutting time.

  • PDF

A Study on Three-Phase Separation Efficiency according to the Diffusion Plate of a High-Speed Centrifugal Separator (고속 원심분리장치의 확산판에 따른 상 분리효율에 관한 연구)

  • Lee, Choon-Man;Jeong, Ho-In
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.99-103
    • /
    • 2019
  • Recently, as the high-precision machinery industry has developed rapidly, peripheral equipment has been developed to improve machining efficiency. Peripheral equipment for machining includes cooling units, housings, oil separators, and much more. Oil, such as cleaning and cutting fluids, is used for machining. When waste oil is reused, the contamination of the workpieces and reduction in machining accuracy are generated by the waste oil, including sludge. Therefore, the development of an oil separator is necessary for efficiently separating oil, water, and sludge. The purpose of this study is to analyze the oil separation efficiency and flow characteristics of a high-speed centrifugal separator according to the rotation velocity and diffusion plate. The oil separation efficiency and flow characteristics were analyzed using hydrodynamic theory and computational fluid dynamics (CFD). The results of this study will be used as basic data for the development of a high-speed centrifugal separator.

NURBS Post-Processing of Linear Tool Path (미소직선 공구경로의 NURBS 변환)

  • Kim, Su-Jin;Choi, In-Hugh;Yang, Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1227-1233
    • /
    • 2003
  • NURBS (Non Uniform Rational B-Spline) is widely used in CAD system and NC data for high speed machining. Conventional CAM system changes NURBS surface to tessellated meshes or Z-map model, and produces linear tool path. The linear tool path is not good fur precise machining and high speed machining. In this paper, an algorithm to change linear tool path to NURBS one was studied and the machining result of NURBS tool path was compared with that of linear tool path. The N-post including both a post-processing and a virtual machining software was developed. The N-Post transforms linear tool path to NURBS tool path and quickly shades a machined product on OpenGL view, while comparing a machined surface with a original CAD one. A virtulal machined model of original tool path and post-processed tool path was compared to original CAD model. The machining error and machining time of post-processed NURBS tool path were investigated.

Performance Evaluation on the Endmill of High Speed Machining for Selection of Tungsten Carbide (WC-Co) Material (초경소재 선정을 위한 고속가공의 엔드밀 성능 평가)

  • Kwon, Dong-Hee;Kim, Jeong-Suk;Kim, Min-Wook;Jeong, Young-Keun;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.359-364
    • /
    • 2008
  • To satisfy the demand of higher cutting performance, mechanical properties with tungsten carbide (WC-Co) tool materials were investigated. Hardness and transverse rupture strength with WC grain size, Co content and density were measured. Compared to H, K, and S manufacture maker as tungsten carbide (WC-Co) tool materials were used for high-speed machining of end-milling operation. The three tungsten carbide (WC-Co) tool materials were evaluated by cutting of STD 11 cold-worked die steel (HRC25) under high-speed cutting condition. Also, tool life was obtained from measuring flank wear by CCD wear measuring system. Tool dynamometer was used to measure cutting force. The cutting force and tool wear are discussed along with tool material characteristics. Consequently, the end-mill of K, H manufacture maker showed higher wear-resistance due to its higher hardness, while the S maker endmill tool showed better performance for high metal removal.