• Title/Summary/Keyword: High-spatial resolution imagery

Search Result 228, Processing Time 0.027 seconds

Enhancement of Spatial Resolution to Local Area for High Resolution Satellite Imagery (고해상도 위성영상을 위한 국소영역 공간해상도 향상 기법)

  • Kang, Ji-Yun;Kim, Ihn-Cheol;Kim, Jea-Hee;Park, Jong Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.137-143
    • /
    • 2013
  • The high resolution satellite images are used in many fields such as weather observation, remote sensing, military facilities monitoring, cultural properties protection etc. Although satellite images are obtained in same satellite imaging system, the satellite images are degraded depending on the condition of hardware(optical device, satellite operation altitude, image sensor, etc.). Due to the fact that changing the hardware of satellite imaging system is impossible for resolution enhancement of these degraded satellite after launching a satellite, therefore the method of resolution enhancement with satellite images is necessary. In this paper the resolution is enhances by using a Super Resolution(SR) algorithm. The SR algorithm is an algorithm to enhance the resolution of an image by uniting many low resolution images, so an output image has higher resolution than using other interpolation methods. But It is difficult to obtain many images of the same area. Therefore, to solve this problem, we applied SR after by applying the affine and projection transform. As a results, we found that the images applied SR after affine and projection transform have higher resolution than the images only applied SR.

Spectral Quality Enhancement of Pan-Sharpened Satellite Image by Using Modified Induction Technique (수정된 영상 유도 기법을 통한 융합영상의 분광정보 향상 알고리즘)

  • Choi, Jae-Wan;Kim, Hyung-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.15-20
    • /
    • 2008
  • High-spatial resolution remote sensing satellites (IKONOS-2, QuickBird and KOMPSAT-2) have provided low-spatial resolution multispectral images and high-spatial resolution panchromatic images. Image fusion or Pan-sharpening is a very important in that it aims at using a satellite image with various applications such as visualization and feature extraction through combining images that have a different spectral and spatial resolution. Many image fusion algorithms are proposed, most methods could not preserve the spectral information of original multispectral image after image fusion. In order to solve this problem, modified induction technique which reduce the spectral distortion of fused image is developed. The spectral distortion is adjusted by the comparison between the spatially degraded pan-sharpened image and original multispectral image and our algorithm is evaluated by QuickBird satellite imagery. In the experiment, pan-sharpened image by various methods can reduce spectral distortion when our algorithm is applied to the fused images.

  • PDF

Change Detection Using Multispectral Satellite Imagery and Panchromatic Satellite Imagery (다중분광 위성영상과 팬크로매틱 위성영상에 의한 변화 검출)

  • Lee, jin-duk;Han, seung-hee;Cho, hyun-go
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.897-901
    • /
    • 2008
  • The objective of this study is to conduct land cover classification respectively using Landsat TM data collected on Oct., 1985 and KOMPSAT-1 EOC data collected on Jan., 2000 covering Gumi city, Gyeongbuk Province and to detect urban change by comparing between both land cover maps. Multispectral images of Landsat TM have spatial resolution of 30m are well known as useful data for extracting information related to landcover, vegetation classification, urban growth analysis and so forth. In contrast, as KOMPSAT-1 EOC collects panchromatic images with relatively high spatial resolution of 6.6m. We try to analyze how accurate landcover classification result is able to be derived from the panchromatic images. As the results of the study, the KOMPSAT EOC data with high resolution greater than 4 times showed higher classification degree than Landsat TM data. It was ascertained that the built-up region was extended by three to four times in the last 15 years between 1985 and 2000. In the contrast, it was shown that the forest region was decreased by 15% to 27% and the grass region including agricultural region was decreased by 28% to 45%.

  • PDF

Multi-Temporal Spectral Analysis of Rice Fields in South Korea Using MODIS and RapidEye Satellite Imagery

  • Kim, Hyun Ok;Yeom, Jong Min
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.407-411
    • /
    • 2012
  • Space-borne remote sensing is an effective and inexpensive way to identify crop fields and detect the crop condition. We examined the multi-temporal spectral characteristics of rice fields in South Korea to detect their phenological development and condition. These rice fields are compact, small-scale parcels of land. For the analysis, moderate resolution imaging spectroradiometer (MODIS) and RapidEye images acquired in 2011 were used. The annual spectral tendencies of different crop types could be detected using MODIS data because of its high temporal resolution, despite its relatively low spatial resolution. A comparison between MODIS and RapidEye showed that the spectral characteristics changed with the spatial resolution. The vegetation index (VI) derived from MODIS revealed more moderate values among different land-cover types than the index derived from RapidEye. Additionally, an analysis of various VIs using RapidEye satellite data showed that the VI adopting the red edge band reflected crop conditions better than the traditionally used normalized difference VI.

PHASE-EXTENST10N INVERSE FILTERING ON REAL SAR IMAGES (실제 SAR 영상에 대한 위상 확장 역필터링의 적용)

  • Do, Dae-Won;Song, Woo-Jin;Kwon, Jun-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.547-550
    • /
    • 2001
  • Through matched filtering synthetic aperture radar (SAR) produces high-resolution imagery from data collected by a relative small antenna. While the impulse response obtained by the matched filter approach produces the best achievable signal-to-noise ratio, large sidelobes must be reduced to obtain higher-resolution SAR images. So, many enhancement methods of SAR imagery have been proposed. As a deconvolution method, the phase-extension inverse filtering is based on the characteristics of the matched filtering used in SAR imaging. It improves spatial resolution as well as effectively suppresses the sidelobes with low computational complexity. In the phase-extension inverse filtering, the impulse response is obtained from simulation with a point target. But in a real SAR environment, for example ERS-1, the impulse response is distorted by many non-ideal factors. So, in the phase-extension inverse filtering for a real SAR processing, the magnitudes of the frequency transfer function have to be compensated to produce more desirable results. In this paper, an estimation method to obtain a more accurate impulse response from a real SAR image is studied. And a compensation scheme to produce better performance of the phase-extension inverse filtering is also introduced.

  • PDF

Moderate fraction snow mapping in Tibetan Plateau

  • Hongen, Zhang;Suhong, Liu;Jiancheng, Shi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.75-77
    • /
    • 2003
  • The spatial distribution of snow cover area is a crucial input to models of hydrology and climate in alpine and other seasonally snow covered areas.The objective in our study is to develop a rapidly automatic and high accuracy snow cover mapping algorithm applicable for the Tibetan Plateau which is the most sensitive about climatic change. Monitoring regional snow extent reqires higher temoral frequency-moderate spatial resolution imagery.Our algorithm is based AVHRR and MODIS data and will provide long-term fraction snow cover area map.We present here a technique is based on the multiple endmembers approach and by taking advantages of current approaches, we developed a technique for automatic selection of local reference spectral endmembers.

  • PDF

Spatial Analysis of Green Infrastructure for Urban Flood Mitigation (도시홍수 방재를 위한 그린 인프라스트럭처 공간분석)

  • Lee, Hye Kyung
    • Journal of KIBIM
    • /
    • v.10 no.4
    • /
    • pp.81-88
    • /
    • 2020
  • Green Infrastructure has been considered as one of strategies for flood mitigation in cities. Although, the diverse benefits of green infrastructure implementation are studies, there is a lack of research on the relationship between spatial composition and configuration of green infrastructure and urban flood mitigation. To address this gap, this study 1) utilized high-resolution satellite imagery to analyze spatial composition and configuration of green infrastructure in highly developed seven cities in South Korea, and 2) conducted an empirical analysis to find the relationship between economic losses from flooding and spatial patterns of green infrastructure and development patterns. The results of this research will be helpful for urban planners to prepare green infrastructure implementation guidelines for effective urban flood mitigation.

Extraction of Road Networks from High Spatial Resolution Satellite Images by Wavelet Transform and Multiresolution Analysis (웨이블릿 변환과 다중해상도분석을 이용한 고해상도 위성영상에서의 도로망 추출)

  • Jung, In-Chul;Sohn, Ji-Yeon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.3
    • /
    • pp.61-70
    • /
    • 2001
  • This paper presents a new method to extract semi-automatically roads from high spatial resolution satellite imagery. This method is based both on wavelet transform and on multiresolution analysis combined in the "$\grave{a}$ trous" algorithm. As an urban road network consists on different classes of streets, multiresolution processing allows to extract the streets class by class. The method was applied to a KVR-1000 image on a part of Busan Metropolitan City. The method was carried out for the road extraction of three different widths and it succeeded in extracting good fitted strips. The accuracy analysis for three types of streets was also performed. The overall accuracy in 4 pixels of width is 80.5%. The result suggests that this method can be used to update road networks in the studied urban network. In summary, the multiresolution approach based on the wavelet transform, used in this study, is regarded as one of effective methods to extract urban road network from high spatial resolution satellite images.

  • PDF

Early Disaster Damage Assessment using Remotely Sensing Imagery: Damage Detection, Mapping and Estimation (위성영상을 활용한 실시간 재난정보 처리 기법: 재난 탐지, 매핑, 및 관리)

  • Jung, Myung-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • Remotely sensed data provide valuable information on land monitoring due to multi-temporal observation over large areas. Especially, high resolution imagery with 0.6~1.0 m spatial resolutions contain a wealth of information and therefore are very useful for thematic mapping and monitoring change in urban areas. Recently, remote sensing technology has been successfully utilized for natural disaster monitoring such as forest fire, earthquake, and floods. In this paper, an efficient change detection method based on texture differences observed from high resolution multi-temporal data sets is proposed for mapping disaster damage and extracting damage information. It is composed of two parts: feature extraction and detection process. Timely and accurate information on disaster damage can provide an effective decision making and response related to damage.

Detecting Greenhouses from the Planetscope Satellite Imagery Using the YOLO Algorithm (YOLO 알고리즘을 활용한 Planetscope 위성영상 기반 비닐하우스 탐지)

  • Seongsu KIM;Youn-In CHUNG;Yun-Jae CHOUNG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.27-39
    • /
    • 2023
  • Detecting greenhouses from the remote sensing datasets is useful in identifying the illegal agricultural facilities and predicting the agricultural output of the greenhouses. This research proposed a methodology for automatically detecting greenhouses from a given Planetscope satellite imagery acquired in the areas of Gimje City using the deep learning technique through a series of steps. First, multiple training images with a fixed size that contain the greenhouse features were generated from the five training Planetscope satellite imagery. Next, the YOLO(You Only Look Once) model was trained using the generated training images. Finally, the greenhouse features were detected from the input Planetscope satellite image. Statistical results showed that the 76.4% of the greenhouse features were detected from the input Planetscope satellite imagery by using the trained YOLO model. In future research, the high-resolution satellite imagery with a spatial resolution less than 1m should be used to detect more greenhouse features.