• Title/Summary/Keyword: High-spatial resolution imagery

Search Result 228, Processing Time 0.03 seconds

Predicting ground-based damage states from windstorms using remote-sensing imagery

  • Brown, Tanya M.;Liang, Daan;Womble, J. Arn
    • Wind and Structures
    • /
    • v.15 no.5
    • /
    • pp.369-383
    • /
    • 2012
  • Researchers have recently begun using high spatial resolution remote-sensing data, which are automatically captured and georeferenced, to assess damage following natural and man-made disasters, in addition to, or instead of employing the older methods of walking house-to-house for surveys, or photographing individual buildings from an airplane. This research establishes quantitative relationships between the damage states observed at ground-level, and those observed from space using high spatial resolution remote-sensing data, for windstorms, for individual site-built one- or two-family residences (FR12). "Degrees of Damage" (DOD) from the Enhanced Fujita (EF) Scale were determined for ground-based damage states; damage states were also assigned for remote-sensing imagery, using a modified version of Womble's Remote-Sensing (RS) Damage Scale. The preliminary developed model can be used to predict the ground-level damage state using remote-sensing imagery, which could significantly lessen the time and expense required to assess the damage following a windstorm.

Comparative Analysis of LPF and HPF for Roads Edge Detection from High Resolution Satellite Imagery (고해상도위성영상에서 도로 경계 검출을 위한 고주파와 저주파 필터링 비교분석에 관한 연구)

  • Choi, Hyun;Kang, In-Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.3-11
    • /
    • 2006
  • The need for edge detection about topography data from the high resolution satellite imagery is happening with increasing frequency according to many people utilize the its imagery as various fields recently. Many experts is recognizing of other GIS will make use of the road detection from the high resolution satellite imagery, including ITS (Intelligent Transportation Systems) and urban planning. This paper is comparative analysis of LPF (Low Pass Filtering) and HPF (High Pass Filtering) for roads edge detection from high resolution satellite imagery. As a result, LPF and HPF can be highlight selective pixels at edge area about input data. In case or applying to other techniques such as LPF for the same purpose, they aye more effective for wide road width which often cause the slight distortion of boundary or overall change of brightness values on the whole Image. Whereas, HPF has ability to enhance selectively detailed components in a target image.

  • PDF

Comparative Study of GDPA and Hough Transformation for Automatic Linear Feature Extraction

  • Ryu, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.238-240
    • /
    • 2003
  • As remote sensing is weighty in GIS updating, it is indispensable to get spatial information quickly and exactly. In this study, we have designed and implemented the program by two algorithms of GDPA (Gradient Direction Profile Analysis) and Hough transformation to extract linear features automatically from high-resolution imagery. We applied the software to embody both algorithms to KOMPSAT-EOC, IKONOS, and Landsat-ETM and made a comparative study of results.

  • PDF

Region Growing Segmentation with Directional Features

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.731-740
    • /
    • 2010
  • A region merging technique is suggested in this paper for the segmentation of high-spatial resolution imagery. It employs a region growing scheme based on the region adjacency graph (RAG). The proposed algorithm uses directional neighbor-line average feature vectors to improve the quality of segmentation. The feature vector consists of 9 components which includes an observation and 8 directional averages. Each directional average is the average of the pixel values along the neighbor line for a given neighbor line length at each direction. The merging coefficients of the segmentation process use a part of the feature components according to a given merging coefficient order. This study performed the extensive experiments using simulation data and a real high-spatial resolution data of IKONOS. The experimental results show that the new approach proposed in this study is quite effective to provide segments of high quality for the object-based analysis of high-spatial resolution images.

Implementation of an Enhanced Change Detection System based on OGC Grid Coverage Specification

  • Lim, Young-Jae;Kim, Hong-Gab;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1099-1101
    • /
    • 2003
  • Change detection technology, which discovers the change information on the surface of the earth by comparing and analyzing multi-temporal satellite images, can be usefully applied to the various fields, such as environmental inspection, urban planning, forest policy, updating of geographical information and the military usage. In this paper, we introduce a change detection system that can extract and analyze change elements from high-resolution satellite imagery as well as low- or middle-resolution satellite imagery. The developed system provides not only 7 pixelbased methods that can be used to detect change from low- or middle-resolution satellite images but also a float window concept that can be used in manual change detection from highresolution satellite images. This system enables fast access to the very large image, because it is constituted by OGC grid coverage components. Also new change detection algorithms can be easily added into this system if once they are made into grid coverage components.

  • PDF

Image segmentation and line segment extraction for 3-d building reconstruction

  • Ye, Chul-Soo;Kim, Kyoung-Ok;Lee, Jong-Hun;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.59-64
    • /
    • 2002
  • This paper presents a method for line segment extraction for 3-d building reconstruction. Building roofs are described as a set of planar polygonal patches, each of which is extracted by watershed-based image segmentation, line segment matching and coplanar grouping. Coplanar grouping and polygonal patch formation are performed per region by selecting 3-d line segments that are matched using epipolar geometry and flight information. The algorithm has been applied to high resolution aerial images and the results show accurate 3-d building reconstruction.

  • PDF

Application of the 3D Discrete Wavelet Transformation Scheme to Remotely Sensed Image Classification

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.355-363
    • /
    • 2007
  • The 3D DWT(The Three Dimensional Discrete Wavelet Transform) scheme is potentially regarded as useful one on analyzing both spatial and spectral information. Nevertheless, few researchers have attempted to process or classified remotely sensed images using the 3D DWT. This study aims to apply the 3D DWT to the land cover classification of optical and SAR(Synthetic Aperture Radar) images. Then, their results are evaluated quantitatively and compared with the results of traditional classification technique. As the experimental results, the 3D DWT shows superior classification results to conventional techniques, especially dealing with the high-resolution imagery and SAR imagery. It is thought that the 3D DWT scheme can be extended to multi-temporal or multi-sensor image classification.

Automated Vinyl Green House Identification Method Using Spatial Pattern in High Spatial Resolution Imagery (공간패턴을 이용한 자동 비닐하우스 추출방법)

  • Lee, Jong-Yeol;Kim, Byoung-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • This paper introduces a novel approach for automated mapping of a map feature that is vinyl green house in high spatial resolution imagery Some map features have their unique spatial patterns. These patterns are normally detected in high spatial resolution remotely sensed data by human recognition system. When spatial patterns can be applied to map feature identification, it will improve image classification accuracy and will be contributed a lot to feature identification. In this study, an automated feature identification approach using spatial aucorrelation is developed, specifically for the vinyl green house that has distinctive spatial pattern in its array. The algorithm aimed to develop the method without any human intervention such as digitizing. The method can investigate the characteristics of repeated spatial pattern of vinyl green house. The repeated spatial pattern comes from the orderly array of vinyl green house. For this, object-based approaches are essential because the pattern is recognized when the shapes that are consists of the groups of pixels are involved. The experimental result shows very effective vinyl house extraction. The targeted three vinyl green houses were exactly identified in the IKONOS image for a part of Jeju area.

ATMOSPHERIC AEROSOL DETECTION AND ITS REMOVEAL FOR SATELLITE DATA

  • Lee, Dong-Ha;Lee, Kwon-Ho;Kim, Young-Joon
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.598-601
    • /
    • 2006
  • Satellite imagery may contain large regions covered with atmospheric aerosol. A high-resolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-1/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.

  • PDF

Land Use Classification in Very High Resolution Imagery by Data Fusion (영상 융합을 통한 고해상도 위성 영상의 토지 피복 분류)

  • Seo, Min-Ho;Han, Dong-Yeob;Kim, Yong-Il
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.17-22
    • /
    • 2005
  • Generally, pixel-based classification, utilize the similarity of distances between the pixel values in feature space, is applied to land use mapping using satellite remote sensing data. But this method is Improper to be applied to the very high resolution satellite data (VHRS) due to complexity of the spatial structure and the variety of pixel values. In this paper, we performed the hierarchical classification of VHRS imagery by data fusion, which integrated LiDAR height and intensity information. MLC and ISODATA methods were applied to IKONOS-2 imagery with and without LiDAR data prior to the hierarchical classification, and then results was evaluated. In conclusion, the hierarchical method with LiDAR data was the superior than others in VHRS imagery and both MLC and ISODATA classification with LiDAR data were better than without.

  • PDF