• 제목/요약/키워드: High-resolution wind field

검색결과 79건 처리시간 0.029초

관측과 기상모델을 이용한 춘천지역의 도시열섬현상 연구 (A Study of Urban Heat Island in Chuncheon Using WRF Model and Field Measurements)

  • 이종범;김재철;장윤정
    • 한국대기환경학회지
    • /
    • 제28권2호
    • /
    • pp.119-130
    • /
    • 2012
  • Heat island phenomena in Chuncheon (Korea) were investigated using air temperature measured by automatic weather stations and temperature dataloggers located at rural and urban sites. Numerical simulation of the phenomena was performed using Weather Research and Forecasting Urban Canopy Model (WRF-UCM) and results were compared with the observation. The model was initialized with NCEP/FNL data. The horizontal resolution of the fine domain is 0.33 km. The results of observational analyses show that the intensity of heat island was significantly higher during the nighttime than during the daytime. The highest measured temperature difference between rural and urban site is $3.49^{\circ}C$ and average temperature difference varies between 1.4 and $1.9^{\circ}C$. Good agreement was found between the simulated and observed temperatures. However, significantly overestimated wind speed was found at the urban sites. The linear regression analysis between observed and simulated temperature shows high correlation coefficient 0.96 for urban and 0.94 for rural sites while for wind speed, a very low correlation coefficient was found, 0.30 and 0.55 respectively.

동해안의 복잡지형에서 기상장 개선에 따른 CALPUFF 모델의 평가 (Evaluation of the CALPUFF Model Using Improved Meteorological Fields in Complex Terrain of East Sea Coast)

  • 이종범;김재철
    • 한국대기환경학회지
    • /
    • 제25권1호
    • /
    • pp.15-25
    • /
    • 2009
  • Donghae city is one of the most representative cement industrial city in Korea. The area is faced with the East Sea to the East and with high montane region of Tae-Back mountain range to the West. Many pollutant sources of air pollution are located near the coast, but the largest point sources of the region are located at the bottom of the mountain area in Donghae city. The local wind is highly affected by local topography and plays an important role in transport and dispersion of contaminants from the pollution sources. This study was designed to evaluate enhancement of MM5 predictions by using Four Dimensional Data Assimilation (FDDA), the SONDE data and the national meteorological station, data only. The alternative meteorological fields predicted with and without FDDA were used to simulate spatial and temporal variations of NOx in combined with Atmospheric Dispersion Models (CALPUFF). For the modeling domain, the alternative meteorological fields with 1.1 km spatial resolution were interpolated to the CALMET with 0.5 km resolution. The vertical layers set to have 35 and 12 layers for MM5 and CALPUFF, respectively. MM5 with the FDDA did not resulted in significant improvement of meteorological field prediction in Donghae region, which is primarily because of complex geography and wind scheme. The result of CALPUFF, however, showed reduction of uncertainty errors by using the interpolation scheme of the actual measurement data.

복잡한 해안지역의 지역특성을 고려한 대기 유동장에 따른 SO2 (Numerical Simulation of Dispersion Fields of SO2 according to Atmospheric Flow Field to Reflect local characteristics in Complex Coastal Regions)

  • 이화운;원혜영;최현정;이강열;김현구
    • 한국환경과학회지
    • /
    • 제14권3호
    • /
    • pp.297-309
    • /
    • 2005
  • Recently air quality modeling studies for industrial complex and large cities located in the coastal regions have been carried out Especially, the representation of atmospheric flow fields within a model domain is very important, because an adequate air quality simulation requires an accurate portrayal of the realistic three­dimensional wind fields. Therefore this study investigated effect of using high resolution terrain height data and FDDA with observational data to reflect local characteristics in numerical simulation. So the experiments were designed according to FDDA and the detail terrain height with 3sec resolution or not Case 30s was the experiment using the terrain height data of USGS without FDDA and Case 3s was the experiment using the detail terrain height data of Ministry of Environment without FDDA and Case 3sF was experiment using the detail terrain height data of Ministry of Environment with FDDA. The results of experiments were more remarkable, In Case 3s and Case 3sF, temperature indicated similar tendency comparing to observational data predicting maximum temperature during the daytime and wind speed made weakly for difference of terrain height Also Case 3sF had more adequate tendency than Case 3s at dawn.

라그랑지안 입자모델을 활용한 도시기온 예측기법의 연구 (Study on Urban Temperature Prediction Method Using Lagrangian Particle Dispersion Model)

  • 김석철;윤정임
    • 한국대기환경학회지
    • /
    • 제33권1호
    • /
    • pp.45-53
    • /
    • 2017
  • A high resolution model is proposed for calculating the temperature field of a large city, based upon a Lagrangian particle model. Utilizing the analogy between the heat and mass transport phenomena in turbulent flows, a Lagrangian particle model, originally developed for air pollutant dispersion problems, is adapted for simulating heat transport. In the model conceptual heat particles are released into the atmosphere from the heat sources and move along with the turbulent winds in accordance with the Markov process. The potential temperature assumed to be conserved along with heat particles serves as a tag, so the temperature fields can be deduced from the distribution of particles. The wind fields are constructed from a diagnostic meteorology model incorporating a morphological model designed for building flows. Test run shows the robustness of the modeling system.

Formation CubeSat Constellation, SNIPE mission

  • Lee, Jaejin
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.58.4-59
    • /
    • 2021
  • This presentation introduces Korea's SNIPE (Small scale magNespheric and Ionospheric Plasma Experiment) mission, formation flying CubeSat constellation. Observing particles and waves on a single satellite suffers from inherent space-time ambiguity. To observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere, four 6U CubeSats (~ 10 kg) will be launched into a polar orbit of the altitude of ~500 km in 2021. The distances of each satellite will be controlled from 10 km to more than 100 km by formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, solid-state telescope, magnetometer, and Langmuir probe. All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium modules provide an opportunity to upload changes in operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather.

  • PDF

오일러와 라그랑주 관측방식의 연직 자료 비교 (Comparison of the Vertical Data between Eulerian and Lagrangian Method)

  • 배혁진;권병혁;김상진;이경훈;이건명;김유진;서지우;구유정
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1009-1014
    • /
    • 2023
  • 복합 환경 신도시의 시공간 고해상도 관측 자료 확보를 위해 오일러 방식과 라그랑주 방식의 종합 관측이 수행되었다. 라그랑주 방식인 두 라디오존데는 관측지점이 다르거나 관측 시각이 달라도 대체로 서로 일치하는 기압, 풍속, 풍향을 산출하였다. 온도 센서가 노출된 라디오존데는 낮 동안 고도가 높아지면서 태양 복사의 영향을 받아 상대적으로 높은 기온을 산출하였다. 오일러 방식의 윈드프로파일러와 라디오존데 비교에서 관측 시각의 차이에 따른 풍향과 풍속의 차이를 확인하였다. 수평적으로 균질장이 아닐 때, 두 관측방식의 자료를 비교하려면 이류 성분을 고려할 필요성을 의미하는 결과이다. 본 연구에서는 두 관측방식 자료의 효과적 비교를 위해 오일러 방식의 관측 주기에 따른 고도 구간별로 다른 시각의 관측 자료를 사용하는 방법을 제시하였다.

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2004년도 대한지구물리학회.한국지구물리탐사학회 공동학술대회 초록집
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF

고해상도 동해 연안 파랑예측모델 구축을 위한 통계적 규모축소화 방법 적용 (An Application of Statistical Downscaling Method for Construction of High-Resolution Coastal Wave Prediction System in East Sea)

  • 지준범;조일성;이규태;이원학
    • 한국지구과학회지
    • /
    • 제40권3호
    • /
    • pp.259-271
    • /
    • 2019
  • 동해 연안지역의 고해상도 파랑예측을 위하여 통계적 규모축소화 방안을 적용하여 고해상도 동해 연안 파랑예측시스템을 구축하였다. 예측시스템을 구축하기 위하여 기상청 현업에서 예측된 동해 및 남해 연안파랑예측모델과 전구파랑예측모델의 예측결과를 이용하였다. 3일까지는 연안파랑예측모델들의 결과를 그대로 활용하였고 3일 이후 7일까지는 전구파랑예측모델의 예측결과를 통계적 규모축소화 방안(역거리 가중 내삽방법과 조건부합성방법)을 적용하여 예측하였다. 예측된 고해상도 연안예측시스템을 이용하여 예측된 파고의 2차원 공간분포는 연안예측모델의 초기장(분석장)과 자기상관관계를 이용하여 검증하였고 부이 등 해양관측소 자료를 이용하여 파고 및 풍속 예측을 검증되었다. 수치모델의 예측성능과 유사하게 초기시간에는 예측성능이 높게 나타났으나 시간이 지남에 따라 예측성능이 점진적으로 감소되었다. 전체 기간의 파고 예측결과를 파고 관측자료를 이용하여 검증하였을 때 역거리 가중 내삽과 조건부합성방법 적용에 따른 상관계수와 평균 제곱근 오차는 0.46과 0.34 m에서 0.6과 0.28 m로 개선되었다.

Polar Mesospheric Summer Echo Characteristics in Magnetic Local Time and Height Profiles

  • Young-Sook Lee;Ram Singh;Geonhwa Jee;Young-Sil Kwak;Yong Ha Kim
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권3호
    • /
    • pp.101-111
    • /
    • 2023
  • We conducted a statistical study of polar mesospheric summer echoes (PMSEs) in relation to magnetic local time (MLT), considering the geomagnetic conditions using the K-index (or K). Additionally, we performed a case study to examine the velocity profile, specifically for high velocities (≥ ~100 m/s) varying with high temporal resolution at high K-index values. This study utilized the PMSE data obtained from the mesosphere-stratosphere-troposphere radar located in Esrange, Sweden (63.7°N, 21°E). The change in K-index in terms of MLT was high (K ≥ 4) from 23 to 04 MLT, estimated for the time PMSE was present. During the near-midnight period (0-4 MLT), both PMSE occurrence and signal-to-noise ratio (SNR) displayed an asymmetric structure with upper curves for K ≥ 3 and lower curves for K < 3. Furthermore, the occurrence of high velocities peaked at 3-4 MLT for K ≥ 3. From case studies focusing on the 0-3 MLT period, we observed persistent eastward-biased high velocities (≥ 200 m/s) prevailing for ~18 min. These high velocities were accompanied with the systematic motion of profiles at 85-88 km, including large shear formation. Importantly, the rapid variations observed in velocity could not be attributed to neutral wind effects. The present findings suggest a strong substorm influence on PMSE, especially in the midnight and early dawn sectors. The large zonal drift observed in PMSE were potentially energized by local electromagnetic fields or the global convection field induced by the electron precipitation during substorms.

Operation load estimation of chain-like structures using fiber optic strain sensors

  • Derkevorkian, Armen;Pena, Francisco;Masri, Sami F.;Richards, W. Lance
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.385-396
    • /
    • 2017
  • The recent advancements in sensing technologies allow us to record measurements from target structures at multiple locations and with relatively high spatial resolution. Such measurements can be used to develop data-driven methodologies for condition assessment, control, and health monitoring of target structures. One of the state-of-the-art technologies, Fiber Optic Strain Sensors (FOSS), is developed at NASA Armstrong Flight Research Center, and is based on Fiber Bragg Grating (FBG) sensors. These strain sensors are accurate, lightweight, and can provide almost continuous strain-field measurements along the length of the fiber. The strain measurements can then be used for real-time shape-sensing and operational load-estimation of complex structural systems. While several works have demonstrated the successful implementation of FOSS on large-scale real-life aerospace structures (i.e., airplane wings), there is paucity of studies in the literature that have investigated the potential of extending the application of FOSS into civil structures (e.g., tall buildings, bridges, etc.). This work assesses the feasibility of using FOSS to predict operational loads (e.g., wind loads) on chain-like structures. A thorough investigation is performed using analytical, computational, and experimental models of a 4-story steel building test specimen, developed at the University of Southern California. This study provides guidelines on the implementation of the FOSS technology on building-like structures, addresses the associated technical challenges, and suggests potential modifications to a load-estimation algorithm, to achieve a robust methodology for predicting operational loads using strain-field measurements.