DOI QR코드

DOI QR Code

Polar Mesospheric Summer Echo Characteristics in Magnetic Local Time and Height Profiles

  • Young-Sook Lee (Department of Astronomy and Space Science, Chungnam National University) ;
  • Ram Singh (Department of Astronomy and Space Science, Chungnam National University) ;
  • Geonhwa Jee (Korea Polar Research Institute) ;
  • Young-Sil Kwak (Department of Astronomy and Space Science, University of Science and Technology) ;
  • Yong Ha Kim (Department of Astronomy and Space Science, Chungnam National University)
  • Received : 2023.05.24
  • Accepted : 2023.07.14
  • Published : 2023.09.15

Abstract

We conducted a statistical study of polar mesospheric summer echoes (PMSEs) in relation to magnetic local time (MLT), considering the geomagnetic conditions using the K-index (or K). Additionally, we performed a case study to examine the velocity profile, specifically for high velocities (≥ ~100 m/s) varying with high temporal resolution at high K-index values. This study utilized the PMSE data obtained from the mesosphere-stratosphere-troposphere radar located in Esrange, Sweden (63.7°N, 21°E). The change in K-index in terms of MLT was high (K ≥ 4) from 23 to 04 MLT, estimated for the time PMSE was present. During the near-midnight period (0-4 MLT), both PMSE occurrence and signal-to-noise ratio (SNR) displayed an asymmetric structure with upper curves for K ≥ 3 and lower curves for K < 3. Furthermore, the occurrence of high velocities peaked at 3-4 MLT for K ≥ 3. From case studies focusing on the 0-3 MLT period, we observed persistent eastward-biased high velocities (≥ 200 m/s) prevailing for ~18 min. These high velocities were accompanied with the systematic motion of profiles at 85-88 km, including large shear formation. Importantly, the rapid variations observed in velocity could not be attributed to neutral wind effects. The present findings suggest a strong substorm influence on PMSE, especially in the midnight and early dawn sectors. The large zonal drift observed in PMSE were potentially energized by local electromagnetic fields or the global convection field induced by the electron precipitation during substorms.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C1005306) and by Korea Polar Research Institute (KOPRI) grant funded by the Ministry of Oceans and Fisheries (KOPRI PE23020). Y.-S. Kwak was supported by basic research funding from the Korea Astronomy and Space Science Institute (KASI) (KASI2023185007). ESRAD is a joint venture between the Swedish Institute of Space Physics and the Swedish Space Corporation (Esrange, Sweden). The author is grateful to Prof. Sheila Kirkwood and Prof. Evgenia Belova for their invaluable advice and contribution to the ESRAD data measurements.

References

  1. Akasofu SI, Meng CI, Kimball DS, Dynamics of the aurora-VI: formation of patches and their eastward motion, J. Atmos. Terr. Phys. 28, 505-506, IN9-IN11, 507-511 (1966). https://doi.org/10.1016/0021-9169(66)90060-2
  2. Balsley BB, Ecklund WL, Fritts DC, Mesospheric radar echoes at Poker Flat, Alaska: evidence for seasonally dependent generation mechanisms, Radio Sci. 18, 1053-1058 (1983). https://doi.org/10.1029/RS018i006p01053
  3. Bremer J, Hansen TL, Hoffmann P, Latteck R, Dependence of polar mesosphere summer echoes on solar and geomagnetic activity, Adv. Space Res. 28, 1071-1076 (2001). https://doi.org/10.1016/S0273-1177(01)80039-9
  4. Briggs BH, The analysis of spaced sensor records by correlation techniques, vol. 13, in Middle Atmosphere Program: Handbook for Map: vol. 13, ed. Vincent RA (Scotts Valley, CA, CreateSpace Independent Publishing Platform, 1984), 166-186.
  5. Briggs BH, Phillips GJ, Shinn DH, The analysis of observations on spaced receivers of the fading of radio signals, Proc. Phys. Soc. B 63, 106-121 (1950). https://doi.org/10.1088/0370-1301/63/2/305
  6. Chilson PB, Kirkwood S, Nilsson A, The Esrange MST radar: a brief introduction and procedure for range validation using balloons, Radio Sci. 34, 427-436 (1999). https://doi.org/10.1029/1998RS900023
  7. Cho JYN, Rottger J, An updated review of polar mesosphere summer echoes: observation, theory, and their relationship to noctilucent clouds and subvisible aerosols, J. Geophys. Res. 102, 2001-2020 (1997). https://doi.org/10.1029/96JD02030
  8. Ecklund WL, Balsley BB, Long-term observations of the arctic mesosphere with the MST radar at Poker Flat, Alaska, J. Geophys. Res. 86, 7775-7780 (1981). https://doi.org/10.1029/JA086iA09p07775
  9. Hargreaves JK, The Solar-Terrestrial Environment (Cambridge, Cambridge University Press, 1992).
  10. Hocking WK, May P, Rottger J, Interpretation, reliability and accuracies of parameters deduced by the spaced antenna method in middle atmosphere applications, Pure Appl. Geophys. 130, 571-604 (1989). https://doi.org/10.1007/BF00874475
  11. Hoffmann P, Singer W, Bremer J, Mean seasonal and diurnal variations of PMSE and winds from 4 years of radar observations at ALOMAR, Geophys. Res. Lett. 26, 1525-1528 (1999). https://doi.org/10.1029/1999GL900279
  12. Holdsworth DA, Reid IM, A simple model of atmospheric radar backscatter: description and application to the full correlation analysis of spaced antenna data, Radio Sci. 30, 1263-1280 (1995). https://doi.org/10.1029/95RS00645
  13. Holdsworth DA, Reid IM, Comparisons of full correlation analysis (FCA) and imaging Doppler interferometry (IDI) winds using the Buckland Park MF radar, Ann. Geophys. 22, 3829-3842 (2004). https://doi.org/10.5194/angeo-22-3829-2004
  14. Hosokawa K, Ogawa Y, Ionospheric variation during pulsating aurora, J. Geophys. Res. Space Phys. 120, 5943-5957 (2015). https://doi.org/10.1002/2015JA021401
  15. Humberset BK, Gjerloev JW, Mann IR, Michell RG, Samara M, On the persistent shape and coherence of pulsating auroral patches, J. Geophys. Res. Space Phys. 123, 4272-4289 (2018). https://doi.org/10.1029/2017JA024405
  16. Kaifler N, Baumgarten G, Fiedler J, Latteck R, Lubken FJ, et al., Coincident measurements of PMSE and NLC above ALOMAR (69° N, 16° E) by radar and lidar from 1999-2008, Atmos. Chem. Phys. 11, 1355-1366 (2011). https://doi.org/10.5194/acp-11-1355-2011
  17. Kavanagh AJ, Honary F, Donovan EF, Ulich T, Denton MH, Key features of > 30 keV electron precipitation during high speed solar wind streams: a superposed epoch analysis, J. Geophys. Res. 117, A9 (2012). https://doi.org/10.1029/2011JA017320
  18. Kirkwood S, Belova E, Dalin P, Mihalikova M, Mikhaylova D, et al., Response of polar mesosphere summer echoes to geomagnetic disturbances in the southern and northern hemispheres: the importance of nitric oxide, Ann. Geophys. 31, 333-347 (2013). https://doi.org/10.5194/angeo-31-333-2013
  19. Kirkwood S, Chilson P, Belova E, Dalin P, Haggstrom I, et al., Infrasound: the cause of strong polar mesosphere winter echoes?, Ann. Geophys. 24, 475-491 (2006). https://doi.org/10.5194/angeo-24-475-2006
  20. Lee YS, Kim YH, Kim KC, Kwak YS, Sergienko T, et al., EISCAT observation of wave-like fluctuations in vertical velocity of polar mesospheric summer echoes associated with a geomagnetic disturbance, J. Geophys. Res. Space Phys. 123, 5182-5194 (2018). https://doi.org/10.1029/2018JA025399
  21. Lee YS, Kirkwood S, Kwak YS, Kim KC, Shepherd GG, Polar summer mesospheric extreme horizontal drift speeds during interplanetary corotating interaction regions (CIRs) and high-speed solar wind streams: coupling between the solar wind and the mesosphere, J. Geophys. Res. Space Phys. 119, 3883-3894 (2014). https://doi.org/10.1002/2014JA019790
  22. Lee YS, Kirkwood S, Kwak YS, Shepherd GG, Kim KC, et al., Characteristics of PMSE associated with the geomagnetic disturbance driven by corotating interaction region and high-speed solar wind streams in the declining solar cycle 23, J. Geophys. Res. Space Phys. 120, 3198-3206 (2015). https://doi.org/10.1002/2015JA021144
  23. Lee YS, Kirkwood S, Shepherd GG, Kwak YS, Kim KC, Long-periodic strong radar echoes in the summer polar D region correlated with oscillations of high-speed solar wind streams, Geophys. Res. Lett. 40, 4160-4164 (2013). https://doi.org/10.1002/grl.50821
  24. Lee YS, Kwak YS, Kim KC, Kim YH, Dynamically unstable strong wind shears observed in the polar mesosphere summer echo layer associated with geomagnetic disturbances, J. Geophys. Res. Space Phys. 125, e2019JA027013 (2020). https://doi.org/10.1029/2019JA027013
  25. Li Q, Rapp M, PMSE observations with the EISCAT VHF- and UHF-radars: ice particles and their effect on ambient electron densities, J. Atmos. Sol. Terr. Phys. 104, 270-276 (2013). https://doi.org/10.1016/j.jastp.2012.10.015
  26. Liu EX, Hu HQ, Hosokawa K, Liu RY, Wu ZS, et al., First observations of polar mesosphere summer echoes by SuperDARN Zhongshan radar, J. Atmos. Sol. Terr. Phys. 104, 39-44 (2013). https://doi.org/10.1016/j.jastp.2013.07.011
  27. McPherron RL, Chu X, Relation of the auroral substorm to the substorm current wedge, Geosci. Lett. 3, 12 (2016). https://doi.org/10.1186/s40562-016-0044-5
  28. Meredith NP, Horne RB, Lam MM, Denton MH, Borovsky JE, et al., Energetic electron precipitation during high-speed solar wind stream driven storms, J. Geophys. Res. 116, A5 (2011). https://doi.org/10.1029/2010JA016293
  29. Nussbaumer V, Fricke KH, Langer M, Singer W, von Zahn U, First simultaneous and common volume observations of noctilucent clouds and polar mesosphere summer echoes by lidar and radar, J. Geophys. Res. Atmos. 101, 19161-19167 (1996). https://doi.org/10.1029/96JD01213
  30. Rapp M, Lübken FJ, Polar mesosphere summer echoes (PMSE): review of observations and current understanding, Atmos. Chem. Phys. 4, 2601-2633 (2004). https://doi.org/10.5194/acp-4-2601-2004
  31. Rapp M, Thomas GE, Modeling the microphysics of mesospheric ice particles: assessment of current capabilities and basic sensitivities, J. Atmos. Sol. Terr. Phys. 68, 715-744 (2006). https://doi.org/10.1016/j.jastp.2005.10.015
  32. Scourfield MWJ, Keys JG, Nielsen E, Goertz CK, Collin H, Evidence for the E×B drift of pulsating auroras, J. Geophys. Res. 88, 7983-7988 (1983). https://doi.org/10.1029/JA088iA10p07983
  33. Stebel K, Barabash V, Kirkwood S, Siebert J, Fricke KH, Polar mesosphere summer echoes and noctilucent clouds: simultaneous and common-volume observations by radar, lidar and CCD camera, Geophys. Res. Lett. 27, 661-664 (2000). https://doi.org/10.1029/1999GL010844
  34. Stober G, Matthias V, Jacobi C, Wilhelm S, Hoffner J, et al., Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16, Ann. Geophys. 35, 711-720 (2017). https://doi.org/10.5194/angeo-35-711-2017
  35. von Zahn U, Bremer J, Simultaneous and common-volume observations of noctilucent clouds and polar mesosphere summer echoes, Geophys. Res. Lett. 26, 1521-1524 (1999). https://doi.org/10.1029/1999GL900206
  36. Yang B, Donovan E, Liang J, Spanswick E, A statistical study of the motion of pulsating aurora patches: using the THEMIS all-sky imager, Ann. Geophys. 35, 217-225 (2017). https://doi.org/10.5194/angeo-35-217-2017
  37. Zeller O, Bremer J, The influence of geomagnetic activity on mesospheric summer echoes in middle and polar latitudes, Ann. Geophys. 27, 831-837 (2009). https://doi.org/10.5194/angeo-27-831-2009