• 제목/요약/키워드: High-resolution imaging

검색결과 896건 처리시간 0.028초

Super Resolution Image Reconstruction using the Maximum A-Posteriori Method

  • Kwon Hyuk-Jong;Kim Byung-Guk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.115-118
    • /
    • 2004
  • Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum A­Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.

  • PDF

High-Resolution Numerical Simulation of Respiration-Induced Dynamic B0 Shift in the Head in High-Field MRI

  • Lee, So-Hee;Barg, Ji-Seong;Yeo, Seok-Jin;Lee, Seung-Kyun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권1호
    • /
    • pp.38-45
    • /
    • 2019
  • Purpose: To demonstrate the high-resolution numerical simulation of the respiration-induced dynamic $B_0$ shift in the head using generalized susceptibility voxel convolution (gSVC). Materials and Methods: Previous dynamic $B_0$ simulation research has been limited to low-resolution numerical models due to the large computational demands of conventional Fourier-based $B_0$ calculation methods. Here, we show that a recently-proposed gSVC method can simulate dynamic $B_0$ maps from a realistic breathing human body model with high spatiotemporal resolution in a time-efficient manner. For a human body model, we used the Extended Cardiac And Torso (XCAT) phantom originally developed for computed tomography. The spatial resolution (voxel size) was kept isotropic and varied from 1 to 10 mm. We calculated $B_0$ maps in the brain of the model at 10 equally spaced points in a respiration cycle and analyzed the spatial gradients of each of them. The results were compared with experimental measurements in the literature. Results: The simulation predicted a maximum temporal variation of the $B_0$ shift in the brain of about 7 Hz at 7T. The magnitudes of the respiration-induced $B_0$ gradient in the x (right/left), y (anterior/posterior), and z (head/feet) directions determined by volumetric linear fitting, were < 0.01 Hz/cm, 0.18 Hz/cm, and 0.26 Hz/cm, respectively. These compared favorably with previous reports. We found that simulation voxel sizes greater than 5 mm can produce unreliable results. Conclusion: We have presented an efficient simulation framework for respiration-induced $B_0$ variation in the head. The method can be used to predict $B_0$ shifts with high spatiotemporal resolution under different breathing conditions and aid in the design of dynamic $B_0$ compensation strategies.

Research on Equal-resolution Image Hiding Encryption Based on Image Steganography and Computational Ghost Imaging

  • Leihong Zhang;Yiqiang Zhang;Runchu Xu;Yangjun Li;Dawei Zhang
    • Current Optics and Photonics
    • /
    • 제8권3호
    • /
    • pp.270-281
    • /
    • 2024
  • Information-hiding technology is introduced into an optical ghost imaging encryption scheme, which can greatly improve the security of the encryption scheme. However, in the current mainstream research on camouflage ghost imaging encryption, information hiding techniques such as digital watermarking can only hide 1/4 resolution information of a cover image, and most secret images are simple binary images. In this paper, we propose an equal-resolution image-hiding encryption scheme based on deep learning and computational ghost imaging. With the equal-resolution image steganography network based on deep learning (ERIS-Net), we can realize the hiding and extraction of equal-resolution natural images and increase the amount of encrypted information from 25% to 100% when transmitting the same size of secret data. To the best of our knowledge, this paper combines image steganography based on deep learning with optical ghost imaging encryption method for the first time. With deep learning experiments and simulation, the feasibility, security, robustness, and high encryption capacity of this scheme are verified, and a new idea for optical ghost imaging encryption is proposed.

High-Resolution Magnetic Resonance Imaging of Intracranial Vertebral Artery Dissecting Aneurysm for Planning of Endovascular Treatment

  • Chun, Dong Hyun;Kim, Sung Tae;Jeong, Young Gyun;Jeong, Hae Woong
    • Journal of Korean Neurosurgical Society
    • /
    • 제58권2호
    • /
    • pp.155-158
    • /
    • 2015
  • The equipment and techniques associated with magnetic resonance imaging (MRI) have rapidly evolved. The development of 3.0 Tesla MRI has enabled high-resolution imaging of the intracranial vessel wall. High-resolution MRI (HRMRI) can yield excellent visualization of both the arterial wall and lumen, thus facilitating the detection of the primary and secondary features of intracranial arterial dissection. In the present report, we describe the manner in which HRMRI affected our endovascular treatment planning strategy in 2 cases with unruptured intracranial vertebral artery dissection aneurysm. HRMRI provides further information about the vessel wall and the lumen of the unruptured intracranial vertebral artery dissecting aneurysm, which was treated by an endovascular approach in the 2 current cases.

Development of hand-held coded-aperture gamma ray imaging system based on GAGG(Ce) scintillator coupled with SiPM array

  • Jeong, Manhee;Hammig, Mark
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2572-2580
    • /
    • 2020
  • Emerging gamma ray detection applications that utilize neutron-based interrogation result in the prompt emission of high-energy (>2 MeV) gamma-rays. Rapid imaging is enabled by scintillators that possess high density, high atomic number, and excellent energy resolution. In this paper, we evaluate the bright (50,000 photons/MeV) oxide scintillator, cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)). A silicon photomultiplier (SiPM) array is coupled to a GAGG(Ce) scintillator array (12 × 12 pixels) and integrated into a coded-aperture based gamma-ray imaging system. A resistor-based symmetric charge division circuit was used reduce the multiplicity of the analog outputs from 144 to 4. The developed system exhibits 9.1%, 8.3%, and 8.0% FWHM energy resolutions at 511 keV, 662 keV, and 1173.2 keV, respectively. In addition, a pixel-identification resolution of 602 ㎛ FWHM was obtained from the GAGG(Ce) scintillator array.

High Resolution ISAR Imaging Based on Improved Smoothed L0 Norm Recovery Algorithm

  • Feng, Junjie;Zhang, Gong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권12호
    • /
    • pp.5103-5115
    • /
    • 2015
  • In radar imaging, a target is usually consisted of a few strong scatterers which are sparsely distributed. In this paper, an improved sparse signal recovery algorithm based on smoothed l0 (SL0) norm method is proposed to achieve high resolution ISAR imaging with limited pulse numbers. Firstly, one new smoothed function is proposed to approximate the l0 norm to measure the sparsity. Then a single loop step is used instead of two loop layers in SL0 method which increases the searching density of variable parameter to ensure the recovery accuracy without increasing computation amount, the cost function is undated in every loop for the next loop until the termination is satisfied. Finally, the new set of solution is projected into the feasible set. Simulation results show that the proposed algorithm is superior to the several popular methods both in terms of the reconstruction performance and computation time. Real data ISAR imaging obtained by the proposed algorithm is competitive to several other methods.

광간섭 단층 영상기술을 이용한 생체 내 microneedle 삽입 구조 영상 (High-resolution imaging of microneedles in biological tissue with optical coherence tomography)

  • 김훈;허정;이강주;유수호;류원형;주철민
    • 정보저장시스템학회논문집
    • /
    • 제9권1호
    • /
    • pp.17-21
    • /
    • 2013
  • Optical coherence tomography (OCT) allows non-invasive, cross-sectional optical imaging of biological tissue with high spatial resolution and acquisition speed. In principle, it is analogous to ultrasound imaging, but uses near-infrared light instead of ultrasound, measuring the time-delay of back-scattered light from within biological tissue. Compared to ultrasound imaging, it exhibits superior spatial resolution (1~10 um) and high sensitivity. Therefore, OCT has been applied to a wide range of applications such as cellular imaging, ophthalmology and cardiology. Here, we describe a novel application of OCT technology in visualizing microneedles embedded in tissue that is developed to deliver drugs into the dermis without the injection mark in the human skin. Detailed three-dimensional structural images of microneedles and biological tissues were obtained. Examining structural modification of microneedles and tissues during insertion process would enable to evaluate performance of various types of microneedles in situ.

RADARGRAMMETRY OF HIGH RESOLUTION SYNTHETIC APERTURE RADAR;A THEORETICAL STUDY

  • Lee, Hoon-Yol
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.266-269
    • /
    • 2007
  • This paper reports the preliminary results on the study of radargrammetry especially for a high-resolution satellite synthetic aperture radar system. Theoretical configurations for radargrammetry in terms of coverage, orbit selection, incidence angles, height sensitivity of parallax and height resolution of DEM were calculated according to the proposed orbit characteristics and the imaging modes of KOMPSAT-5 SAR. Possible imaging strategies and mission scenarios for coverage versus rapidity are suggested for a future mission dedicated to radargrammetry.

  • PDF

An Efficient Focusing Method for High Resolution Ultrasound Imaging

  • Kim Kang-Sik
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권1호
    • /
    • pp.22-29
    • /
    • 2006
  • This paper proposes an efficient array beamforming method using spatial matched filtering for ultrasound imaging. In the proposed method, ultrasound waves are transmitted from an array subaperture with fixed transmit focus as in conventional array imaging. At receive, radio frequency (RF) echo signals from each receive channel are passed through a spatial matched filter that is constructed based on the system transmit-receive spatial impulse response. The filtered echo signals are then summed. The filter remaps and spatially registers the acoustic energy from each element so that the pulse-echo impulse response of the summed output is focused with acceptably low side lobes. Analytical beam pattern analysis and simulation results using a linear array show that the proposed spatial filtering method can provide more improved spatial resolution and contrast-to-noise ratio (CNR) compared with conventional dynamic receive focusing (DRF) method by implementing two-way dynamically focused beam pattern throughout the field.

Geant4 몬테칼로 전산모사 툴킷을 이용한 이중모드 컴프턴 카메라 최적화 설계 및 성능평가 (Preliminary Study of Performance Evaluation of a Dual-mode Compton Camera by Using Geant4)

  • 박진형;서희;김성훈;김영수;김찬형
    • Journal of Radiation Protection and Research
    • /
    • 제37권4호
    • /
    • pp.191-196
    • /
    • 2012
  • 한양대학교에서는 핵물질 탐지를 위해 고에너지 감마선원 영상화에 적합한 이중산란형 컴프턴 카메라의 원형을 개발하였다. 이중산란형 컴프턴 카메라는 높은 영상해상도를 제공하지만, 기존의 단일산란형 컴프턴 카메라보다 상대적으로 영상감도가 낮다는 한계가 있다. 이에 본 연구에서는 개발된 이중산란형 컴프턴 카메라에 단일산란형 컴프턴 카메라의 기능을 추가함으로써 하나의 시스템에서 두 가지 모드로 작동하는 이중모드 컴프턴 카메라(고민감도(단일산란형)모드와 고해상도(이중산란형)모드)에 대한 개념설계와 이에 대한 최적화 설계를 수행하였다. 최적화된 시스템에서 고민감도 모드는 고해상도 모드에 비해 전 에너지 영역에서 약 100배 정도 높은 고유영상감도를 제공하는 것으로 평가되었으며, 고해상도 모드에서 영상해상도는 기존의 이중산란형 컴프턴 카메라와 거의 같은 결과를 보여 고해상도 영상을 제공하는 것으로 나타났다.