• Title/Summary/Keyword: High-resolution Satellite Image

Search Result 624, Processing Time 0.029 seconds

SEMI-AUTOMATIC 3D BUILDING EXTRACTION FROM HIGH RESOLUTION SATELLITE IMAGES

  • Javzandulam, Tsend-Ayush;Rhee, Soo-Ahm;Kim, Tae-Jung;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.606-609
    • /
    • 2006
  • Extraction of building is one of essential issues for the 3D city models generation. In recent years, high-resolution satellite imagery has become widely available, and this shows an opportunity for the urban mapping. In this paper, we have developed a semi-automatic algorithm to extract 3D buildings in urban settlements areas from high-spatial resolution panchromatic imagery. The proposed algorithm determines building height interactively by projecting shadow regions for a given building height onto image space and by adjusting the building height until the shadow region and actual shadow in the image match. Proposed algorithm is tested with IKONOS images over Deajeon city and the algorithm showed promising results.┌阀؀䭏佈䉌ᔀ鳪떭臬隑駭验耀

  • PDF

The Application of Orbital Modeling and Rational Function Model for Ground Coordinate from High Resolution Satellite Data (고해상도 인공위성데이터로부터 지상좌표 결정을 위한 궤도모델링 및 RFM기법 적용)

  • Seo, Doo-Chun;Yang, Ji-Yeon;Lee, Dong-Han;Im, Hyo-Suk
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.187-195
    • /
    • 2008
  • Generation of accurate ground coordinates from high resolution satellite image are becoming increasingly of interest. The primary focus of this paper is to compute satellite direct sensor model (DSM) and rational function model (RFM) for accurate generation of ground coordinates from high resolution satellite images. Being based on this we presented an algorithm to be able to efficiently ground coordinates about large area with introducing RFM(rational function model) method applied to rigorous sensor modeling standing on basis of satellite orbit dynamics and collinearity equation, and sensor modeling of high-resolution satellite data like IKONOS, QuickBird, KOMPSAT-2 and others. The general high resolution satellite measures the position, velocity and attitude data of satellite using star, gyro, and GPS sensors.

  • PDF

The Application of RFM for Geometric Correction of High-Resolution Satellite Image Data (고해상도 인공위성 영상데이터의 기하보정을 위한 RFM의 적용)

  • 안기원;임환철;서두천
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • In this study, in order to discuss the geometric correction methods of high-resolution IKONOS satellite image, the existing polynomial model and RFM which is able to rectify satellite image without auxiliary data are applied to IKONOS satellite image data. Then the accuracy of ground point versus number of GCPs and each order of RFM are assessed. A numerical instability is removed by application of Tikhonov regularization method. As the results of this study, the root mean square errors of RFM is decreased more than 2 pixels in comparison with the two dimensional polynomial model.

Applicability Evaluation of Spatio-Temporal Data Fusion Using Fine-scale Optical Satellite Image: A Study on Fusion of KOMPSAT-3A and Sentinel-2 Satellite Images (고해상도 광학 위성영상을 이용한 시공간 자료 융합의 적용성 평가: KOMPSAT-3A 및 Sentinel-2 위성영상의 융합 연구)

  • Kim, Yeseul;Lee, Kwang-Jae;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1931-1942
    • /
    • 2021
  • As the utility of an optical satellite image with a high spatial resolution (i.e., fine-scale) has been emphasized, recently, various studies of the land surface monitoring using those have been widely carried out. However, the usefulness of fine-scale satellite images is limited because those are acquired at a low temporal resolution. To compensate for this limitation, the spatiotemporal data fusion can be applied to generate a synthetic image with a high spatio-temporal resolution by fusing multiple satellite images with different spatial and temporal resolutions. Since the spatio-temporal data fusion models have been developed for mid or low spatial resolution satellite images in the previous studies, it is necessary to evaluate the applicability of the developed models to the satellite images with a high spatial resolution. For this, this study evaluated the applicability of the developed spatio-temporal fusion models for KOMPSAT-3A and Sentinel-2 images. Here, an Enhanced Spatial and Temporal Adaptive Fusion Model (ESTARFM) and Spatial Time-series Geostatistical Deconvolution/Fusion Model (STGDFM), which use the different information for prediction, were applied. As a result of this study, it was found that the prediction performance of STGDFM, which combines temporally continuous reflectance values, was better than that of ESTARFM. Particularly, the prediction performance of STGDFM was significantly improved when it is difficult to simultaneously acquire KOMPSAT and Sentinel-2 images at a same date due to the low temporal resolution of KOMPSAT images. From the results of this study, it was confirmed that STGDFM, which has relatively better prediction performance by combining continuous temporal information, can compensate for the limitation to the low revisit time of fine-scale satellite images.

TEXTURE ANALYSIS, IMAGE FUSION AND KOMPSAT-1

  • Kressler, F.P.;Kim, Y.S.;Steinnocher, K.T.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.792-797
    • /
    • 2002
  • In the following paper two algorithms, suitable for the analysis of panchromatic data as provided by KOMPSAT-1 will be presented. One is a texture analysis which will be used to create a settlement mask based on the variations of gray values. The other is a fusion algorithm which allows the combination of high resolution panchromatic data with medium resolution multispectral data. The procedure developed for this purpose uses the spatial information present in the high resolution image to spatially enhance the low resolution image, while keeping the distortion of the multispectral information to a minimum. This makes it possible to use the fusion results for standard multispecatral classification routines. The procedures presented here can be automated to large extent, making them suitable for a standard processing routine of satellite data.

  • PDF

A STUDY ON SPATIAL FEATURE EXTRACTION IN THE CLASSIFICATION OF HIGH RESOLUTIION SATELLITE IMAGERY

  • Han, You-Kyung;Kim, Hye-Jin;Choi, Jae-Wan;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.361-364
    • /
    • 2008
  • It is well known that combining spatial and spectral information can improve land use classification from satellite imagery. High spatial resolution classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, extracting the spatial information is one of the most important steps in high resolution satellite image classification. In this paper, we propose a new spatial feature extraction method. The extracted features are integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a Support Vector Machines classifier. In order to evaluate the proposed feature extraction method, we applied our approach to KOMPSAT-2 data and compared the result with the other methods.

  • PDF

Standardization of High-resolution Satellite Image data (고해상도 위성 영상자료 표준화 동향)

  • Lee, Dong-Han;Seo, Doo-Chun;Lim, Hyo-Suk
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.31-39
    • /
    • 2008
  • In this paper, the definition and the requirement from Users of standardization of high resolution satellite image data will be presented. If Users do not use the satellite image data, the satellite will be useless thing though it has been developed and operated now. The standardization of the satellite image data will make Users use the image data with no problem, so KARI has to do the standardization of it as a space agency that has developed and operated the satellite. For the standardization of it, the technical requirement to develop the satellite, the international standardization for the satellite image data and the requirement from Users will be reflected into the satellite development, and then the format and content of the satellite image data to Users have to be accommodated with the standard format of it. In addition to it, the calibration and validation just make sure of the quality of the satellite image data. For this, KARI has just been doing the standardization of KOMPSAT series in stages.

  • PDF

The comparative study of PKNU2 Image and Aerial photo & satellite image

  • Lee, Chang-Hun;Choi, Chul-Uong;Kim, Ho-Yong;Jung, Hei-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.453-454
    • /
    • 2003
  • Most research materials (data), which are used for the study of digital mapping and digital elevation model (DEM) in the field of Remote Sensing and Aerial Photogrammetry are aerial photographs and satellite images. Additionally, they are also used for National land mapping, National land management, environment management, military purposes, resource exploration and Earth surface analysis etc. Although aerial photographs have high resolution, the data, which they contain, are not used for environment exploration that requires continuous observation because of problems caused by its coastline, as well as single - spectral and long-term periodic image. In addition to this, they are difficult to interpret precisely because Satellite Images are influenced by atmospheric phenomena at the time of photographing, and have by far much lower resolution than existing aerial photographs, while they have a great practical usability because they are mulitispectral images. The PKNU 2 is an aerial photographing system that is made to compensate with the weak points of existing aerial photograph and satellite images. It is able to take pictures of very high resolution using a color digital camera with 6 million pixels and a color infrared camera, and can take perpendicular photographs because PKNU 2 system has equipment that makes the cameras stay level. Moreover, it is very cheap to take pictures by using super light aircraft as a platform. It has much higher resolution than exiting aerial photographs and satellite images because it flies at a low altitude about 800m. The PKNU 2 can obtain multispectral images of visible to near infrared band so that it is good to manage environment and to make a classified diagram of vegetation.

  • PDF

Analysis on Mission and Maneuver in High Resolution Satellite with TDI (TDI를 사용하는 고해상도 위성의 임무 및 기동 분석)

  • 김희섭;김규선;김응현;정대원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.53-59
    • /
    • 2006
  • Need for agile satellite increases for performing various mission due to increase of satellite image applications and users. In high resolution satellite TDI (time delay and integration) method is adopted in order to improve SNR. But image quality can be degraded by satellite maneuver. In this paper requirements for remote sensing in high resolution satellite with agility are extracted and an approach to operate the agile satellite to perform the missions are proposed. The proposed approach in this paper will be applicable to system level design and analysis.

Automatic National Image Interpretability Rating Scales (NIIRS) Measurement Algorithm for Satellite Images (위성영상을 위한 NIIRS(Natinal Image Interpretability Rating Scales) 자동 측정 알고리즘)

  • Kim, Jeahee;Lee, Changu;Park, Jong Won
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.725-735
    • /
    • 2016
  • High-resolution satellite images are used in the fields of mapping, natural disaster forecasting, agriculture, ocean-based industries, infrastructure, and environment, and there is a progressive increase in the development and demand for the applications of high-resolution satellite images. Users of the satellite images desire accurate quality of the provided satellite images. Moreover, the distinguishability of each image captured by an actual satellite varies according to the atmospheric environment and solar angle at the captured region, the satellite velocity and capture angle, and the system noise. Hence , NIIRS must be measured for all captured images. There is a significant deficiency in professional human resources and time resources available to measure the NIIRS of few hundred images that are transmitted daily. Currently, NIIRS is measured every few months or even few years to assess the aging of the satellite as well as to verify and calibrate it [3]. Therefore, we develop an algorithm that can measure the national image interpretability rating scales (NIIRS) of a typical satellite image rather than an artificial target satellite image, in order to automatically assess its quality. In this study, the criteria for automatic edge region extraction are derived based on the previous works on manual edge region extraction [4][5], and consequently, we propose an algorithm that can extract the edge region. Moreover, RER and H are calculated from the extracted edge region for automatic edge region extraction. The average NIIRS value was measured to be 3.6342±0.15321 (2 standard deviations) from the automatic measurement experiment on a typical satellite image, which is similar to the result extracted from the artificial target.