• Title/Summary/Keyword: High-pressure air jet

Search Result 106, Processing Time 0.019 seconds

Features of Korean Rainfall Variability by Western Pacific Teleconnection Pattern (서태평양 원격패턴에 따른 한국 4월 강수량의 변동 특성)

  • Choi, Jae-Won;Park, Ki-Jun;Lee, Kyungmi;Kim, Jeoung-Yun;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.893-905
    • /
    • 2015
  • This study analyzes the correlation between Western Pacific (WP) teleconnection pattern index (WPI) in April during 1954-2008 and rainfall amounts in the same month. Based on the results, it is identified that there have been strong positive correlations between central China, Korea and the southwestern part of Japan in the East Asian region. Through differences between 10 positive WP years and 10 negative WP years selected from the April WPI excluding ENSO years, it is found that rainfall amounts increase in April of positive WP years due to the following characteristics. Increases in rainfall amounts are evident in the East Asian middle latitudinal region where the positive correlation between the two variables is the highest and this is because anomalous southwesterlies are strengthened in the East Asian middle latitudinal region due to the spatial pattern of a south-low-north-high anomalous pressure system centered on this region that is made by anomalous anticyclones centered on the southeastern side of the region and other anomalous anticyclones centered on the northeastern side of the region. In addition, anomalous westerlies (jet) are strengthen in the upper troposphere of the East Asian middle latitudinal region and as a result, anomalous upward flows are strengthened in this region and thus anomalous warm air temperatures are formed in the entire level of the troposphere in the region. In addition to atmospheric environments, anomalous warm sea surface temperatures are formed in the seas in the East Asian middle latitudinal region to help the rainfall amount increases in the East Asian middle latitudinal region.

Study of hydrodynamics and iodine removal by self-priming venturi scrubber

  • Jawaria Ahad;Talha Rizwan ;Amjad Farooq ;Khalid Waheed ;Masroor Ahmad ;Kamran Rasheed Qureshi ;Waseem Siddique ;Naseem Irfan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.169-179
    • /
    • 2023
  • Filtered containment system is a passive safety system that controls the over-pressurization of containment in case of a design-based accidents by venting high pressure gaseous mixture, consisting of air, steam and radioactive particulate and gases like iodine, via a scrubbing system. An indigenous lab scale facility was developed for research on iodine removal by venturi scrubber by simulating the accidental scenario. A mixture of 0.2 % sodium thiosulphate and 0.5 % sodium hydroxide, was used in scrubbing column. A modified mathematical model was presented for iodine removal in venturi scrubber. Improvement in model was made by addition of important parameters like jet penetration length, bubble rise velocity and gas holdup which were not considered previously. Experiments were performed by varying hydrodynamic parameters like liquid level height and gas flow rates to see their effect on removal efficiency of iodine. Gas holdup was also measured for various liquid level heights and gas flowrates. Removal efficiency increased with increase in liquid level height and gas flowrate up to an optimum point beyond that efficiency was decreased. Experimental results of removal efficiency were compared with the predicted results, and they were found to be in good agreement. Maximum removal efficiency of 99.8% was obtained.

The Permeation Behaviors of $H_2S/CH_4$ using Polyimide Hollow Fiber Membranes (폴리이미드 중공사막을 이용한 $H_2S/CH_4$ 투과거동에 관한 연구)

  • Lee, Hyung-Keun;An, Young-Mo;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Park, Yeong-Seong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.261-267
    • /
    • 2009
  • Polyimide which is the glassy polymer has high chemical resistance, thermal stability and high mechanical property. In this study, the polyimide hollow fiber membranes were prepared by the dry-jet wet phase inversion in order to investigate the permeation porperties of the $H_2S$ and $CH_4$. The morphology of prepared hollow fiber membranes and their permeation behaviors of $H_2S$ and $CH_4$ before and after silicon coating were evaluated. The permeance of $H_2S$ and $H_2S/CH_4$ selectivity increased due to plasticization with increasing the feed pressure. The permeance of KSM03b and selectivity of KSM03d were highest among the three type membranes used this experiments. The permeance decreased but the $H_2S/CH_4$ selectivity increased with increasing the air gap. The permeance reduced after silicon coating. However, the selectivity increased and the selectivity of KSM03d was 275 at 7 atm.

Pre-grouting for CHI of EPB shield TBM in difficult grounds: a case study of Daegok-Sosa railway tunnel (복합지반 EPB TBM 커터교체를 위한 그라우팅 수행 사례)

  • Kang, Sung-Wook;Chang, Jaehoon;Lee, Jae-Won;Kim, Dae-Young;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.281-302
    • /
    • 2021
  • Railway projects have been consistently increasing in Korea. In relation to this trend, the mechanized tunneling using Tunnel Boring Machine (TBM) is preferably applied for mining urban areas and passing under rivers. The TBM tunneling under difficult grounds like mixed faces with high water pressure could require ground improvements for stable TBM advance or safe cutter head intervention (CHI). In this study, pre-grouting works for CHI in Daegok-Sosa railway project are presented in terms of the grouting zone design, the executions and the results, the lessons learned from the experience. It should be mentioned that the grouting from inside TBM was carried out several times and turned out to be inefficient in the project. Therefore, grouting experiences from the surface are highlighted in this study. Jet grouting was implemented on CHI points on land, while permeation grouting off shore in the Han River, which mostly allow to access the cutter head of TBM in free air with stable faces. The results of CHI works have been analyzed and the lesson learned are suggested.

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF

The Study of Nano-vesicle Coated Powder (나노베시클 표면처리 분체의 개발연구)

  • Son, Hong-Ha;Kwak, Taek-Jong;Kim, Kyung-Seob;Lee, Sang-Min;Lee, Cheon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.45-51
    • /
    • 2006
  • In the field of makeup cosmetics, especially, powder-based foundations such as two-way cake, pact and face powder, the quality of which is known to be strongly influenced by the properties of powder, surface treatment technology is widely used as a method to improve the various characteristics of powder texture, wear properties, dispersion ability and so on. The two-way cake or pressed-powder foundation is one of the familiar makeup products in Asian market for deep covering and finishing purpose. In spite of the relent progress in surface modification method such as composition of powders with different characteristics and application of a diversity of coating ingredient (metal soap, amino acid, silicone and fluorine), this product possess a technical difficulty to enhance both of the adhesion power and spreadability on the skin in addition to potential claim of consumer about heavy or thick feeling. This article is covering the preparation and coating method of nano-vesicle that mimic the double-layered lipid lamellar structure existing between the corneocytes of the stratum corneum in the skin for the purpose of improving both of two important physical characteristic of two-way cake, spreadability and adhering force to skin, and obtining better affinity to skin. Nano-vesicle was prepared using the high-pressure emulsifying process of lecithin, pseudo ceramide, butylene glycol and tocopheryl acetate. This nano-sized emulsion was added to powder-dispersed aqueous phase together with bivalent metal salt solution and then the filtering and drying procedure was followed to yield the nano-vesicle coated powder. The amount of nano-vesicle coated on the powder was able to regulated by the concentration of metal salt and this novel powder showed the lower friction coefficient, more uniform condition of application and higher adhesive powder comparing with the alkyl silane treated powder from the test result of spreadability and wear properties using friction meter and air jet method. Two-wav cake containing newly developed coated powder with nano-vesicle showed the similar advantages in the frictional and adhesive characteristics.