• Title/Summary/Keyword: High-precision constant current

Search Result 26, Processing Time 0.031 seconds

Inverter Systems of Constant Current Regulate by Using Advanced Measurement and Switching Techniques (개선된 계측 및 스위칭 기법을 이용한 정전류조정 인버터 시스템)

  • Shon, Jin-Geun;Seo, Il-Dong;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.4
    • /
    • pp.173-178
    • /
    • 2007
  • As development of industry is accelerated, most electricity load system requires power supply that could be high precision and effective control. Among supply and control unit of suitable power supply in these load characteristic, inverter systems of constant current regulate is used widely control of lighting & beaconing of aerodromes and electric heating system. Therefore, in this paper proposed a inverter systems of constant current regulate that using improved measurement and switching techniques. Proposed measure techniques that used moving average method of instantaneous r.m.s. for measuring current sensing improved response and precision. Also, in this paper proposed improved high effectiveness switching techniques that get high efficiency of inverter by the double-carrier modulation. Results of an experiment proved effect of proposed system.

Design of a High-Precision Constant Current AC-DC Converter with Inductance Compensation

  • Chang, Changyuan;Xu, Yang;Bian, Bin;Chen, Yao;Hu, Junjie
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.840-848
    • /
    • 2016
  • A primary-side regulation AC-DC converter operating in the PFM (Pulse Frequency Modulation) mode with a high precision output current is designed, which applies a novel inductance compensation technique to improve the precision of the output current, which reduces the bad impact of the large tolerance of the transformer primary side inductance in the same batch. In this paper, the output current is regulated by the OSC charging current, which is controlled by a CC (constant current) controller. Meanwhile, for different primary inductors, the inductance compensation module adjusts the OSC charging current finely to improve the accuracy of the output current. The operation principle and design of the CC controller and the inductance compensation module are analyzed and illustrated herein. The control chip is implemented based on a TSMC 0.35μm 5V/40V BCD process, and a 12V/1.1A prototype has been built to verify the proposed control method. The deviation of the output current is within ±3% and the variation of the output current is less than 1% when the inductances of the primary windings vary by 10%.

Development of High Precision Impedance Measurement Systems in Specific Ranges Using a Microprocessor (마이크로프로세서를 이용한 특정 영역에서 고정밀 임피던스 측정 시스템 개발)

  • Ryu, Jae-Chun;Lee, Myung-Eui
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.316-321
    • /
    • 2019
  • In this paper, by applying the constant current principle we develop an impedance measurement system which can measure the high precision impedance of various electric materials by using microprocessor. This measurement system board has an interface device for acquiring digital data from an external device including an impedance measuring device, and system software is also developed by a firmware program executed on such an embedded board. It can measure the high precision impedance of a specific band with 1/32768 precision by using 15-bit ADC(analog to digital converter) and calculate it to the five digits to the right of the decimal point(fraction part). Data is transmitted through a USB interface of a general computer and a measuring device to manage digital data. An impedance measurement system equipped with a communication function capable of a more general and easy-to-use interface than other equipment is developed and verified.

A High-precision AC Power Control System for Variable Loads Application (가변부하 적용을 위한 고정밀 교류전원 제어시스템)

  • Han, Wun-Dong;Shon, Jin-Geun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.74-81
    • /
    • 2008
  • The control system of high-precision AC power is important in traffic management lighting and beaconing of aerodromes, etc. To control AC power supply in these load characteristics, inverter systems of AC/DC/AC conversion are widely used in high-precision current control. Therefore, in this paper, a inverter system of constant current regulation using improved measuring technique of feedback current is proposed. Proposed measuring techniques improve response and precision in that it use moving average method of instantaneous RMS for measuring current sensing. Results of the computer simulation and experiment prove the effects of proposed system.

  • PDF

A Study on Applications and Design of Driving Controller Circuit in hybrid Stepping Motor (Hybrid Stepping Motor의 Driving Controller 설계와 응용에 관한 연구)

  • 최도순
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.2
    • /
    • pp.74-79
    • /
    • 2001
  • The Stewing Motor has applied for engineering technology and that special used to auto mobile technology, robot technology and still more automatic machinery. If it make used to the motor for automatic machinery. That have high precision step of motor and high efficiency. n order to operation in this paper, the static position of motor to have analyzing, comparison of constant voltage control methode and constant current methode. And designed to a controller circuit of 4 phase unipolar driving and 2 phase bipolar driving of stepping motor.

  • PDF

Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function (출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계)

  • Song, Ki-Nam;Han, Seok-Bung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.593-600
    • /
    • 2010
  • In this paper, High brightness LED (light-emitting diodes) driver IC (integrated circuit) using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET (metal oxide semiconductor field effect transistor) from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. To confirm the functioning and characteristics of our proposed LED driver IC, we designed a buck converter. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses 1.0 ${\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre (Cadence) simulation.

Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function (출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계)

  • Han, Seok-Bung;Song, Ki-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.9-9
    • /
    • 2010
  • In this paper, High Brightness LED driver IC using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses $1{\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre(Cadence) simulation.

  • PDF

High Power Density Open-frame Type DC-DC Converter Module with Constant Current Control (정전류 제어 기능이 부가된 고전력밀도의 개방형 DC-DC 컨버터 모듈)

  • Lee Darl-Woo;Ahn Tae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.380-387
    • /
    • 2005
  • We report the performance of an open-frame type low-voltage high-current DC-DC converter module developed using an active clamp forward converter circuit and single ended rectifier. The converter module is designed with the specifications of an 3.3V output voltage, 30A output current, 100W output power and 36-75V input voltage. The synchronous rectifier is used to reduce the conduction loss at high current level and constant current control using precision PCB resistance is adapted to enhance the over current protection function in the system configuration. A prototype converter module is successfully implemented within 8mm height and quarter brick size (58x37mm) and recorded an $95W/in^3$ power density, 90.6$\%$ efficiency and 0.07$\%$ voltage regulation for the entire Input voltage range, thereby demonstrating its application potentials to future telecommunication electronics.

A Study on the Parameter Analysis for High Precision Optical Current Sensor Implementation (고정도 광 전류센서 구현을 위한 파라미터 분석 연구)

  • Kim, Young-Soo;Lim, Young-Hoon;Hyun, Duck-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.265-267
    • /
    • 2001
  • In this paper, some optical parameters which have effects on the measuring precision and sensitivity of optical current sensor are analyzed. Each parameter occurs changes of specific characteristics of optical sensor system. The influences of performance and characteristics variation of optical current sensor are described in accordance with the changes of optical output power, optical bias point which is called phase difference, and a specific constant related to sensor material and wavelength of light source.

  • PDF