• Title/Summary/Keyword: High-power transducer

Search Result 103, Processing Time 0.027 seconds

Power Generation Characteristics of Uni-morph Piezoelectric Cantilever with Different Vibration Angle (진동 각도에 따른 유니몰프 압전 캔틸레버의 발전특성연구)

  • Kim, Chang Il;Yun, Ji Sun;Park, Woon-Ik;Jeong, Young-Hun;Hong, Youn Woo;Cho, Jeong-Ho;Paik, Jong Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.107-113
    • /
    • 2017
  • Energy source of a piezo-electric harvester is vibration. Sources of vibration are machineries operated with high frequencies, constructions and people operated with low frequencies and etc. In this study, we tried to figure out power generation properties over vibrations upon angles of a piezo-cantilever for applying them to movements of the construction and/or people, which are vibration sources at low frequencies. A uni-morph cantilever with a $59mm{\times}29mm{\times}0.2mm$ piezo-electric element attached on a $71mm{\times}46mm{\times}0.25mm$ copperplate was used. A spring was attached to the lower side of the cantilever and a mass was attached on the opposite side. Also, a structure with a specific angle which is an angle in between the ground and the cantilever was prepared and then, connected to a spring or the cantilever. Then, this structure was divided into the A-type and B-type and excited in the direction of z- axis. After that, the angle between the ground and the cantilever was changed and excited by 1 to 10 Hz upon the existence of a spring and/or a mass to compare power generation properties.

ZnO/3C-SiC/Si(100) 다층박막구조에서의 표면탄성파 전파특성

  • 김진용;정훈재;나훈주;김형준
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.80-80
    • /
    • 2000
  • Surface acoustic wave (SAW) devices have become more important as mobile telecommunication systems need h호-frrequency, low-loss, and down-sized components. Higher-frequency SAW divices can be more sasily realized by developing new h호-SAW-velocity materials. The ZnO/diamond/Si multilasyer structure is one of the most promising material components for GHz-band SAW filters because of its SAW velocity above 10,000 m/sec. Silicon carbide is also a potential candidate material for high frequency, high power and radiation resistive electronic devices due to its superior mechanical, thermal and electronic properties. However, high price of commercialized 6- or 4H-SiC single crystalline wafer is an obstacle to apply SiC to high frequency SAW devices. In this study, single crystalline 3C-SiC thin films were grown on Si (100) by MOCVD using bis-trimethylsilymethane (BTMSM, C7H20Si7) organosilicon precursor. The 3C-SiC film properties were investigated using SEM, TEM, and high resolution XRD. The FWHM of 3C-SiC (200) peak was obtained 0.37 degree. To investigate the SAW propagation characteristics of the 3C-SiC films, SAW filters were fabricated using interdigital transducer electrodes on the top of ZnO/3C-SiC/Si(100), which were used to excite surface acoustic waves. SAW velocities were calculated from the frequency-response measurements of SAW filters. A generalized SAW mode. The hard 3C-SiC thin films stiffened Si substrate so that the velocities of fundamental and the 1st mode increased up to 5,100 m/s and 9,140 m/s, respectively.

  • PDF

Design and fabrication of Ka-band high-power, high-efficiency spatial combiner using TM01 mode Transducer (TM01 모드 변환을 이용한 Ka 대역 고출력 고효율 공간 결합기 설계 및 제작)

  • Kim, Hyo-Chul;Cho, Heung-Rae;Lee, Ju-Heun;Lee, Deok-Jae;An, Se-Hwan;Lee, Man-Hee;Joo, Ji-Han;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.25-32
    • /
    • 2021
  • In this study, it proposes a mode converter that is relatively easy to implement and can shorten the transmission line length of the final combining port and it was fabricated and tested by applying it to an 8-way spatial combiner. The proposed mode converter converts the signal converted from the doorknob-shaped circular disk connected to the ground into the TM01 mode by opening it in the circular waveguide. The 8-way waveguide spatial combiner is designed and implemented so that 8 signals input from the H-plane are combined in a circular waveguide at the center, and the final combining mode is TM01. The test results confirmed excellent performance with an insertion loss of less than 0.4dB and a combining efficiency of 95% or more. In addition, it was confirmed that it is suitable for high output by calculating the breakdown voltage and discharge threshold power of the new mode conversion structure through electric field analysis. The results confirmed through this study are expected to be applicable to high-power, high-efficiency SSPA in various fields in the future.

A Defect Detection of Thin Welded Plate using an Ultrasonic Infrared Imaging (초음파 열화상 검사를 이용한 박판 용접시편의 결함 검출)

  • Cho, Jai-Wan;Chung, Chin-Man;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1060-1066
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material efficiently. In this paper a detection of the welding defect of thin SUS 304 plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (20kHz) ultrasonic transducer was used to infuse the welded thin SUS 304 plates with a short pulse of sound for 280ms. The ultrasonic source has a maximum power of 2kW. The surface temperature of the area under inspection is imaged by a thermal infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the defect tip and heated up highly, are observed. From the sequence of the thermosonic images, the location of defective or inhomogeneous regions in the welded thin SUS 304 plates can be detected easily.

A Horn of Half-Wave Design for Ultrasonic Metal Welding (초음파 금속 용착용 반파장 혼의 설계)

  • Jang, Ho-Su;Park, Woo-Yeol;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.76-81
    • /
    • 2012
  • Ultrasonic metal welding is one of the welding methods which welds metal by applying high frequency vibrational energy into specific area at constant pressure, avaliable in room temperature and low temperature. Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each parts' shape, length and mass can affect driving frequency and vibration mode. This paper focused to horn design, its length L was set to 62mm by calculating vibration equation. By performing modal analysis with various shape variable b times integer, when length of b is 30mm the output was 39,599Hz at 10th mode. Also by performing harmonic response analysis, the frequency response result was 39,533Hz, which was similar to modal analysis result. In order to observe the designed horn's performance, about 4,000 voltage data was obtained from a light sensor and was analyzed by FFT analysis using Origin Tool. The result RMS amplitude was approximately 8.5${\mu}m$ at 40,000Hz, and maximum amplitude was 12.3${\mu}m$. Therefore, it was verified that the ultrasonic metal welding horn was optimally designed.

Characteristics of ZnO thin film for surface acoustic filters (표면탄성파 필터를 위한 ZnO 박막의 특성)

  • Kim, Young-Jin;Park, Wuk-Dong;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.45-50
    • /
    • 1995
  • The excellent c-axis oriented zinc oxide thin films were prepared by the RF magnetron sputtering method on glass substrates. Optimum fabrication conditions of the ZnO films were such that RF power, substrate temperature, and gas pressure of mixture Ar(50%):$O_{2}$(50%) were 150 W, $200^{\circ}C$, and 5 mTorr, respectively. In these conditions, the deposition rate was $310\;{\AA}/min$, and the resistivity of the film was $1{\times}10^6\;{\Omega}{\cdot}cm$. The ZnO film also showed high c-axis orientation and crystalinity according to XRD pattern and SEM photograph. A fabricated interdigital transducer generated 1st mode surface acoustic wave at 46.6 MHz and 2nd mode surface acoustic wave at 52.5 MHz. At the 1st mode, the phase velocity of surface acoustic wave and the electromechanical coupling coefficient were 2795 m/sec and 0.031 %, respectivly. At the 2nd mode, they were 3149 m/sec and 0.019 %. respectivly.

  • PDF

Experimental Investigation on the Vapor Explosions with Water/R22 (Water / R22 폭발실험수행을 통한 증기폭발에 관한 연구)

  • Park, I.K.;Park, G.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.257-264
    • /
    • 1994
  • Experimental studies hate been peformed to investigate vapor explosion phenomena which may threaten the containment integrity during severe accidents in nuclear power plants. In this study, experimental equipment is constructed for vapor explosion experiments, and the vapor explosion experiments were conducted using water/R22. During the experiments, water/R22 interaction phenomena were observed using the high speed camera, and the explosion pressure and released mechanical energy were measured with pressure transducer and pressure relief tube. And the effects of some important parameters-hot liquid temperature, hot liquid injection velocity, hot liquid injection velocity, hot liquid injection time, and cold liquid depth-were investigated on the vapor explosion. Also, the experiment with grid was conducted to study reactor -vessel-lower-structure effect on fuel/coolant interaction. Water/R22 explosion conversion ratios were measured between 0.5∼1.6%.

  • PDF

Electromyographic Analysis of Wrist Flexors by the Shape of Ultrasound Head (초음파 도자의 모양에 따른 손목굽힘근의 근전도 분석)

  • Kim, Won-Ho;Kim, Jong-Man;Park, Hyung-Ki;Park, Eun-Young
    • Physical Therapy Korea
    • /
    • v.14 no.3
    • /
    • pp.9-15
    • /
    • 2007
  • The purpose of this study was to investigate electromyographic activities of the flexor digitorum superficialis (FDS) and the flexor carpi ulnaris (FCU) by the shape of the ultrasound head. Twelve healthy subjects participated and performed ultrasound therapy with a round head and a long handled head during each 5-minute application. Electromyographic activities of the FDS and FCU were recorded by surface electrodes and normalized by maximal voluntary isometric contraction (MVIC) values. There was no difference in the muscular fatigue of FDS and FCU as determined by the shape of the ultrasound head (p>.05). Without the shape of head, the mean power frequency decreased with the time. There also was no difference in %MVIC of the FDS and FCU as determined by the shape of the ultrasound head (p>.05), but the force exerted exceeded 20%MVIC. There was however a significant difference in the amount of cumulative workload of the FDS and FCU as determined by the shape of ultrasound head (p<.05). The workload was however not affected by the shape of the ultrasound head. Constant static grasp of ultrasound transducer head during ultrasound therapy is considered a high risk factor of work-related musculoskeletal disease.

  • PDF

Ultrasonic Characterization of a Resonating High-Speed Microcantilever (초음파 기법을 이용한 고속 마이크로 캔틸레버의 공진 특성평가)

  • Kim, Yun Young;Lee, Seonwook;Park, Jiwon;Cho, Younho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.483-489
    • /
    • 2017
  • An ultrasonic technique was developed to characterize the resonance behavior of a microcantilever operating in a megahertz regime. A high-power ultrasonic pulser and a contact transducer were employed to excite the silicon microcantilever, and a Michelson interferometer was used to obtain the time domain waveform. The natural frequency of the microcantilever was evaluated through the fast Fourier transform of the signal, and a numerical analysis using the finite element method confirmed the measurement data. The present study proposes a novel and facile method to evaluate nanoscale materials and structures with high sensitivity compared to conventional approaches.

A Study on Digital Communication in Air Using Parametric Array (파라메트릭 어레이를 이용한 공기 중 디지털 통신 연구)

  • Je, Yub;Lee, Jae-Il;Lee, Chong-Hyun;Moon, Won-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.768-773
    • /
    • 2009
  • This paper demonstrates the digital communication in air using the parametric array. The stepped-plate transducer which is suitable for high-power and high-efficient radiation is used to generate the difference frequency wave with the parametric array. The primary frequencies are selected to 83 kHz and 122 kHz and the resulting difference frequency wave at the frequency of 39 kHz is used for the communication. The modulation method is selected to On-Off Keying method. The waveform and signal-to-noise ratio (SNR) is measured and analyzed to see the characteristics of the digital communication using the parametric array. The proper distance for the communication using parametric array is about 3 m. The measured beam width of the 3dB SNR reduction was $14^{\circ}$. The possibility of the communication in air using the parametric array is confirmed and the high directional characteristic of the communication using the parametric array is expected to have the advantages for the multi path and the security problems.