• Title/Summary/Keyword: High-power Lasers

Search Result 116, Processing Time 0.021 seconds

The CW lasing characteristics of a Cr:LiSAF laser pumped by semiconductor lasers (반도체 레이저에 의해 펌핑되는 Cr:LiSAF 레이저의 연속 발진 특성)

  • 윤장한;박종대;조창호;이재형;장준성
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.47-51
    • /
    • 1997
  • A Cr:LiSAF laser pumped by semiconductor lasers was constructed. The pumping laser was a high-power semiconductor laser (SDL 7432-H1) of wavelength 674 nm and maximum power of 500 mW. The laser crystal was a Cr:LiSAF of plano-Brewster shape with 3% Cr3+ion concentration and 3 mm in length. The plane facet of the crystal was coated to get the maximum transmittance of pupmping laser and maximu reflection over the 800 - 880 nm bandwidth. V-shaped resonator was used to compensate the astigmatism induced by the crystal. The output power of the Cr:LiSAF laser was 19.4 mW at the pumping power of 290 mW. The wavelength was tuned by a steep dive-angled birefringent filter from 840 nm to 880 nm and the characteristics of the filter were agreed well with a theory.

  • PDF

300-W-class Side-pumped Solar Laser

  • Qi, Hongfei;Lan, Lanling;Liu, Yan;Xiang, Pengfei;Tang, Yulong
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.627-633
    • /
    • 2022
  • To realize uniform side pumping of solar lasers and improve their output power, a solar concentrating system based on off-axis parabolic mirrors is proposed. Four identical off-axis parabolic mirrors with focal length of 1,000 mm are toroidally arranged as the primary concentrator. Four two-dimensional compound parabolic concentrators (2D-CPCs) are designed as a secondary concentrator to further compress the focused spot induced by the parabolic mirrors, and the focused light is then homogenized by four rectangular diffusers and provides uniform pumping for a laser-crystal rod to achieve solar laser emission. Simulation results show that the solar power received by the laser rod, uniformity of the light spot, and output power of the solar laser are 7,872.7 W, 98%, and 351.8 W respectively. This uniform pumping configuration and concentrator design thus provide a new means for developing high-power side-pumped solid-state solar lasers.

Current Status and Prospects of High-Power Fiber Laser Technology (Invited Paper) (고출력 광섬유 레이저 기술의 현황 및 전망)

  • Kwon, Youngchul;Park, Kyoungyoon;Lee, Dongyeul;Chang, Hanbyul;Lee, Seungjong;Vazquez-Zuniga, Luis Alonso;Lee, Yong Soo;Kim, Dong Hwan;Kim, Hyun Tae;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.1
    • /
    • pp.1-17
    • /
    • 2016
  • Over the past two decades, fiber-based lasers have made remarkable progress, now having reached power levels exceeding kilowatts and drawing a huge amount of attention from academy and industry as a replacement technology for bulk lasers. In this paper we review the significant factors that have led to the progress of fiber lasers, such as gain-fiber regimes based on ytterbium-doped silica, optical pumping schemes through the combination of laser diodes and double-clad fiber geometries, and tandem schemes for minimizing quantum defects. Furthermore, we discuss various power-limitation issues that are expected to incur with respect to the ultimate power scaling of fiber lasers, such as efficiency degradation, thermal hazard, and system-instability growth in fiber lasers, and various relevant methods to alleviate the aforementioned issues. This discussion includes fiber nonlinear effects, fiber damage, and modal-instability issues, which become more significant as the power level is scaled up. In addition, we also review beam-combining techniques, which are currently receiving a lot of attention as an alternative solution to the power-scaling limitation of high-power fiber lasers. In particular, we focus more on the discussion of the schematics of a spectral beam-combining system and their individual requirements. Finally, we discuss prospects for the future development of fiber laser technologies, for them to leap forward from where they are now, and to continue to advance in terms of their power scalability.

Fabrication of High Power InGaAs Diode Lasers (고출력 InGaAs레이저 다이오드 제작)

  • 계용찬;손낙진;권오대
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.79-86
    • /
    • 1994
  • Gain-guided broad-area single quantum well separate confinement heterostructure diode lasers have been fabricated from structures grown by metal organic vapor phase epitaxy. The active layer of the epi-structure is InGaAs emitting 962-965nm and the guiding layer GaAs. The channel width is fixed to 150${\mu}$m and the cavity length varys within the range of 300~800${\mu}$m. For uncoated LD's, the output power of 0.7W has been obtaained at a pulsed current level of 2A, which results about 60% external quantum efficiency. The threshold current density is 200A/cm$^{2}$ for the cavity lengths of 800.mu.m LD's. The stain effect upon the transparent current density has been observed. The internal quantum efficiency is expected to be 88% and the internal loss to be 18$cm^{-1}$. The beam divergence has been measured to be 7$^{\circ}$to lateral and 40$^{\circ}$to transverse direction. finally, 1.2W continuous-wave output power has been obtained at a current level of 2A for AR/HR coated LD's die-bonded on Cu heat-sink and cooled by TEC.

  • PDF

Particular aspects of drivers for VCSELs operating at multi-Gb/s

  • Kyriakis-Bitzaros, Efstathios D.;Katsafouros, Stavros G.;Halkias, George
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.82-86
    • /
    • 2002
  • It is demonstrated that the conventional current-pulse laser drivers are not adequate in driving VCSELs operating at multi-Gb/s speeds. Simulation results, including the bonding parasitics, show that high-performance VCSELs are more efficiently driven using voltage-pulse mode of operation. The optical output power is almost doubled in the voltage-mode of operation, while the total electrical power consumption of the transmitter decreases by 20%.

Characteristics of Stimulated Brillouin Scattering Suppression in High-power Fiber Lasers Using Temperature Gradients (온도구배에 의한 고출력 광섬유 레이저의 유도 브릴루앙 산란 억제 특성)

  • Jeong, Seongmook;Kim, Kihyuck;Lee, Sunghun;Hwang, Soonhwi;Yang, Hwanseok;Moon, Byunghyuck;Jhon, Young Min;Park, Min Kyu;Lee, Jung Hwan
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.4
    • /
    • pp.167-173
    • /
    • 2019
  • In this paper, we studied characteristics of stimulated Brillouin scattering (SBS) suppression in high-power fiber lasers by using apparatuses applying a temperature gradient (i.e. a step, a sine shape, and random temperature distribution) along the fiber. From the ytterbium-doped polarization-maintaining fiber master oscillator power amplifier built in house, we measured the back-reflection spectrum and power for each temperature gradient, showing that the step shape temperature distribution was the most effective way to suppress SBS. In addition, we investigated the interaction of pseudo-random binary sequence phase modulation conditions and temperature gradients for SBS suppression.

Surface Heat treatment of Die material by means of CW Nd:YAG Laser (CW Nd:YAG레이저를 이용한 금형 재료의 표면열처리)

  • Yoo Young-Tae;Shin Ho-Jun;Jang Woo-Yang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.67-74
    • /
    • 2004
  • Laser heat treatment is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power $CO_2$ lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching action to occur and the formation of matrensitic structure. In this investigation, the microstructrual features occurring in Nd:YAG laser hardening SM45C and $STD_11$ steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimisation of the processing parameters for maximum hardened depth of SM45C and $STD_11$ steel specimens of 10mm thickness by using CW:YAG laser.

Metallic pattern Heat treatment by means of CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 금형열처리)

  • Shin, Ho-Jun;Yoo, Young-Tae;Oh, Yong-Seak;Ro, Kyoung-Bo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1898-1904
    • /
    • 2003
  • Laser heat treatment is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power $CO_{2}$ lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching to occur and the formation of matrensitic structure. In this investigation, the microstructrual features occurring in Nd:YAG laser hardening SM45C and $STD_{11}$ steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimisation of the processing parameters for maximum hardened depth of SM45C and $STD_{11}$ steel specimens of 10mm thickness by using CW Nd:YAG laser.

  • PDF