Fig. 1. Design and development of temperature gradient apparatus. (a) Stepwise temperature gradient using bobbin-type apparatus. (b) Sinusoidal temperature gradient using spiral-type apparatus. (c) Random temperature gradient using disk-type apparatus.
Fig. 2. Measurement results of temperature distribution by the thermal camera. (a) Stepwise temperature gradient using bobbin-type apparatus. (b) Sinusoidal temperature gradient using spiral-type apparatus. (c) Random temperature gradient using disk-type apparatus.
Fig. 3. Schematic diagram of the SBS measurement step.
Fig. 4. Measurement result of the seed laser linewidth. (a) Schematic diagram of the self-heterodyne step. (b) Result of the seed laser linewidth.
Fig. 5. Characteristics of SBS suppression using temperature gradients at 155 W laser output power. (a) Measurement results of the back reflection optical spectrum by changing the temperature deviation of stepwise temperature gradients. (b) Measurement results of the back reflection optical power by temperature gradients.
Fig. 6. Characteristics of SBS suppression by changing the PRBS patterns at 217 W laser output power.
Fig. 7. Interaction of the PRBS pattern and temperature gradient for SBS suppression. (a) Changing the PRBS pattern without temperature gradient. (b) Changing the PRBS pattern with stepwise temperature gradient of 45℃.
Table 1. Back reflection power with and without temperature gradient for various conditions of PRBS pattern at 217 W laser power
References
- T. J. Wagner, "Fiber laser beam combining and power scaling progress, Air Force Research Laboratory Laser Division," Proc. SPIE 8237, 823718 (2012).
- Y. H. Park, Y. S. Youn, M. W. Jung, C. Jun, B.-A. Yu, and W. Shin, "Polarization-maintained single-mode 400-W Yb-doped fiber laser with 2.5-GHz linewidth from a 3-stage MOPA system," Korean J. Opt. Photon. 29, 159-165 (2018). https://doi.org/10.3807/KJOP.2018.29.4.159
- M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, "11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber," Proc. SPIE 6873, 68730N (2008).
- R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972). https://doi.org/10.1364/AO.11.002489
- R. Engelbrecht, J. Hagen, and M. Schmidt, "SBS-suppression in variably strained fibers for fiber-amplifiers and fiber-lasers with a high spectral power density," Proc. SPIE 5777, 795-799 (2005).
- A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735-17744 (2014). https://doi.org/10.1364/OE.22.017735
- J. B. Coles, B. P.-P. Kuo, N. Alic, S. Moro, C.-S. Bres, J. M. C. Boggio, A. A. Andrekson, M. Karlsson, and S. Radic, "Bandwidth-efficient phase modulation techniques for Stimulated Brillouin Scattering suppression in fiber optic parametric amplifiers," Opt. Express 18, 18138-18150 (2010). https://doi.org/10.1364/OE.18.018138
- I. Dajani, C. Vergien, C. Robin, and C. Zeringue, "Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output," Opt. Express 17, 24317-24333 (2009). https://doi.org/10.1364/OE.17.024317
- P. D. Dragic, J. Ballato, S. Morris, and T. Hawkins, "The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers," Opt. Mater. 35, 1627-1632 (2013). https://doi.org/10.1016/j.optmat.2013.04.006
- J. D. Marconi, J. M. C. Boggio, and H. L. Fragnito, "Narrow linewidth fibre-optical wavelength converter with strain suppression of SBS," Electron. Lett. 40, 1213-1214 (2004). https://doi.org/10.1049/el:20045961
- C. Robin, I. Dajani, and F. Chiragh, "Experimental studies of segmented acoustically tailored photonic crystal fiber amplifier with 494 W single-frequency output," Proc. SPIE 7914, 79140B (2011).
- T. Kurashima, T. Horiguchi, and M. Tateda, "Thermal effects of Brillouingain spectra in single-mode fibers," IEEE Photon. Technol. Lett. 2, 718-720 (1990). https://doi.org/10.1109/68.60770
- S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, "502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier," Opt. Express 15, 17044-17050 (2007). https://doi.org/10.1364/OE.15.017044
- J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightwave Technol. 19, 1691-1697 (2001). https://doi.org/10.1109/50.964069
- V. R. Supradeepa, "Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise," Opt. Express 21, 4677-4687 (2013). https://doi.org/10.1364/OE.21.004677
- J. E. Rotenberg, P. A. Thielen, M. Wickham, and C. P. Asman, "Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers," Proc. SPIE 6873, 68730O (2008).
- J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, "Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions," J. Lightwave Technol. 23, 3808-3814 (2005). https://doi.org/10.1109/JLT.2005.856226
- R. Engelbrecht, A. Dobroschke, and B. Schmauss, "SBS shaping and suppression by arbitrary strain distributions realized by a fiber coiling machine," in Proc. IEEE/LEOS Winter Topicals Meeting Series (Austria, Jan. 2009), WC1.3, 248-249 (2009).
- C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, "A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light," Opt. Express 20, 21196-21213 (2012). https://doi.org/10.1364/OE.20.021196
- B. M. Anderson, A. Flores, and I. Dajani, "Filtered pseudo random modulated fiber amplifier with enhanced coherence and nonlinear suppression," Opt. Express 25, 17671-17682 (2017). https://doi.org/10.1364/OE.25.017671
- I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, and T. Ehrenreich, "Multi-kilowatt power scaling and coherent beam combining of narrow-linewidth fiber lasers," Proc. SPIE, 9728, 972801 (2016).
- A. Motil, A. Bergman, and M. Tur, "State of the art of Brillouin fiber-optic distributed sensing," Opt. Laser Technol. 78, 81-103 (2016). https://doi.org/10.1016/j.optlastec.2015.09.013