• 제목/요약/키워드: High-order boundary element method

검색결과 77건 처리시간 0.036초

Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.591-600
    • /
    • 2019
  • Based on the energy-variational principle, a coupling vibration analysis model of high-speed railway simply supported beam bridge-track structure system (HSRBTS) was established by considering the effect of shear deformation. The vibration differential equation and natural boundary conditions of HSRBTS were derived by considering the interlayer slip effect. Then, an analytic calculation method for the natural vibration frequency of this system was obtained. By taking two simply supported beam bridges of high-speed railway of 24 m and 32 m in span as examples, ANSYS and MIDAS finite-element numerical calculation methods were compared with the analytic method established in this paper. The calculation results show that two of them agree well with each other, validating the analytic method reported in this paper. The analytic method established in this study was used to evaluate the natural vibration characteristics of HSRBTS under different interlayer stiffness and length of rails at different subgrade sections. The results show that the vertical interlayer compressive stiffness had a great influence on the high-order natural vibration frequency of HSRBTS, and the effect of longitudinal interlayer slip stiffness on the natural vibration frequency of HSRBTS could be ignored. Under different vertical interlayer stiffness conditions, the subgrade section of HSRBTS has a critical rail length, and the critical length of rail at subgrade section decreases with the increase in vertical interlayer compressive stiffness.

해상풍력발전용 고정식 원형 하부구조물에 작용하는 파랑 및 조류 하중 해석을 위한 CFD 기법의 적용 (CFD Application to Evaluation of Wave and Current Loads on Fixed Cylindrical Substructure for Ocean Wind Turbine)

  • 박연석;진정수;김우전
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.7-14
    • /
    • 2011
  • Numerical simulations were performed for the evaluation of wave and current loads on a fixed cylindrical substructure model for an ocean wind turbine using the ANSYS-CFX package. The numerical wave tank was actualized by specifying the velocity at the inlet and applying momentum loss as a wave damper at the end of the wave tank. The Volume-Of-Fluid (VOF) scheme was adopted to capture the air-water interface. An accuracy validation of the numerical wave tank with a truncated vertical circular cylinder was accomplished by comparing the CFD results with Morison's formula, experimental results, and potential flow solutions using the higher-order boundary element method (HOBEM). A parametric study was carried out by alternately varying the length and amplitude of the wave. As a meaningful engineering application, in the present study, three kinds of conditions were considered, i.e., cases with current, waves, and a combination of current and progressive waves, passing through a cylindrical substructure model. It was found that the CFD results showed reasonable agreement with the results of the HOBEM and Morison's formula when only progressive waves were considered. However, when a current was included, CFD gave a smaller load than Morison's formula.

Design Optimization and Performance of High Voltage Composite Bushing

  • 조한구;강형경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.234-234
    • /
    • 2009
  • This paper illustrates the use of electric field computation to optimize the design of high voltage composite bushing. In the bushing, a high electric stress occurred between field shaper and central conductor by the closely space. Also coaxial cylindrical shield has a great height along the axis to control an electric field. Consequently, all the potentials are raised axially along the field shaper and electric stress is concentrated on a part of the surface of the FRP tube near the upper end of the field shaper. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing. The optimized design uses internal elements for electric stress grading at critical parts of the bushing.

  • PDF

초고압 컴포지트 부싱의 최적설계 및 성능에 관한 연구 (Design Optimization and Performance of High Voltage Composite Bushing)

  • 조한구;김광용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술대회 논문집
    • /
    • pp.35-35
    • /
    • 2010
  • This paper illustrates the use of electric field computation to optimize the design of high voltage composite bushing. In the bushing, a high electric stress occurred between field shaper and central conductor by the closely space. Also coaxial cylindrical shield has a great height along the axis to control an electric field. Consequently, all the potentials are raised axially along the field shaper and electric stress is concentrated on a part of the surface of the FRP tube near the upper end of the field shaper. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing. The optimized design uses internal elements for electric stress grading at critical parts of the bushing.

  • PDF

초고압 폴리머 부싱의 내부쉴드 형상에 따른 전계분포 특성 (Electric Field Distribution of High Voltage Polymer Bushing with Inner Field Shaper Designs)

  • 조한구;유대훈;강형경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.369-370
    • /
    • 2008
  • This paper describes the electric field distribution of high voltage polymer bushing with inner field shaper designs. The field control can be achieved by means of the designs of such internal field shaper. But high electric stress occurred between field shaper and central conductor by the closely space. In accordance, the floating and ring shield designs was importance for electric stress grading at critical parts of the bushing. The bushing has a central conductor, and internal ring shield or floating shield, gaps are formed between field shaper and ring shield. Accordance equipotential lines extend through gaps. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing.

  • PDF

초고압 폴리머 부싱의 구조에 따른 전계분포 해석 (Analysis of Electric Field Distribution of High Voltage Polymeric Bushing with Structure)

  • 조한구;유대훈;강형경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.489-490
    • /
    • 2008
  • This paper describes the analysis of electric field distribution of high voltage polymeric bushing with structure. The high voltage bushing consists of FRP tube and housing made of LSR. The field control can be achieved by means of the design of such internal field shaper and top corona ring as grading electrodes. In accordance, the optimized design uses both internal and external elements for electric stress grading at critical parts of the bushing. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymeric bushing.

  • PDF

Quadratic strip theory for high-order dynamic behavior of a large container ship with 3D flow effects

  • Heo, Kyeong-uk;Koo, Weoncheol;Park, In-Kyu;Ryue, Jungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권2호
    • /
    • pp.127-136
    • /
    • 2016
  • Springing is the resonance phenomenon of a ship hull girder with incoming waves having the same natural frequency of the ship. In this study, a simple and reliable calculation method was developed based on quadratic strip theory using the Timoshenko beam approach as an elastic hull girder. Second-order hydrodynamic forces and Froude-Krylov forces were applied as the external force. To improve the accuracy of the strip method, the variation in the added mass along the ship hull longitudinal direction, so called tip-effect, was considered. The J-factor was also employed to compensate for the effect of three-dimensional fluid motion on the two-node vibration of the ship. Using the developed method, the first- and second-order vertical bending moments of the Flokstra ship were compared. A comparative study was also carried out for a uniform barge ship and a 10,000 TEU container ship with the respective methods including the J-factor and tip-effect.

An analytical solution to the vibration characteristics for continuous girder bridge-track coupling system and its application

  • Feng, Yulin;Jiang, Lizhong;Zhou, Wangbao;Zhang, Yuntai;Liu, Xiang
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.601-612
    • /
    • 2021
  • To study the vibration characteristics of a high-speed railway continuous girder bridge-track coupling system (HSRCBT), a coupling vibration analysis model of an m-span continuous girder bridge-subgrade-track system with n-span approach bridge was established. The model was based on the energy and its variational method, where both the interlaminar slip and shear deformation effects were considered. In addition, the free vibration equations and natural boundary conditions of the HSRCBT were derived. Further, according to the coordination principle of deformation and mechanics, an analytical method for calculating the natural vibration frequencies of the HSRCBT was obtained. Three typical bridge-subgrade-track coupling systems of high-speed railway were taken and the results of finite element analysis were compared to those of the analytical method. The errors between the simulation results and calculated values of the analytical method were less than 3%, thus verifying the analytical method proposed in this paper. Finally, the analytical method was used to investigate the influence of the number of the approach bridge spans and the interlaminar stiffness on the natural vibration characteristics of the HSRCBT based on the degree of sensitivity. The results suggest the approach bridges have a critical number of spans and in general, the precision requirements of the analysis could be met by using 6-span approach bridges. The interlaminar vertical compressive stiffness has very little influence on the low-order natural vibration frequency of HSRCBT, but does have a significant influence on higher-order natural vibration frequency. As the interlaminar vertical compressive stiffness increases, the degree of sensitivity to interlaminar stiffness of each of the HSRCBT natural vibration characteristics decrease and gradually approach zero.

유한차분법에 의한 등분포 상재하중하 적층 복합재 경사판 해석 (Analysis of Laminated Composite Skew Plates with Uniform Distributed Load by Finite Difference Method)

  • 박원태;최재진;장석윤
    • 한국강구조학회 논문집
    • /
    • 제12권3호통권46호
    • /
    • pp.291-302
    • /
    • 2000
  • 복합적층 구조물에서 복합재료는 그 자체의 높은 강성, 강도와 내구성등의 특성을 갖고 있을 뿐 아니라, 구조물의 역학적 특성에 따라 얼마든지 재료의 특성을 합리적으로 구성하여 배치할 수 있는 매우 우수한 장점이 있다. 본 연구에서는 등분포로 재하된 복합적층경사판의 처짐에 관한 해석으로서 복합적층 경사판의 처짐을 나타내는 단일 4차 편미분방정식을 3개의 종속변수를 갖는 3원2차 연립방정식을 이용하여 해석하는 수치해석 법을 제시하였으며, 대칭 앵글-플라이 각도로 적층, 역대칭 앵글-플라이 각도로 적층, 비대칭 앵글-플라이 각도로 적층한 경우에 처짐과 단면력을 비교 검토하였다.

  • PDF

벌크형 와이어직조 카고메 트러스 PCM의 압축거동 (I) - 균일 변형 상계해 - (Mechanical Behaviors under Compression in Wire-Woven Bulk Kagome Truss PCMs (I) - Upper Bound Solution with Uniform Deformation -)

  • 현상일;최지은;강기주
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.694-700
    • /
    • 2007
  • Recently, a new cellular metal, WBK(Wire woven Bulk Kagome) has been introduced. WBK is fabricated by assembling metal wires in six directions into a Kagome-like truss structure and by brazing it at all the crossings. Wires as the raw material are easy to handle and to attain high strength with minimum defect. And the strength and energy absorption are superior to previous cellular metals. Therefore, WBK seems to be promising once the fabrication process for mass production is developed. In this paper, an upper bound solution for the mechanical properties of the bulk WBK under compression is presented. In order to simulate uniform behavior of WBK consisted of perfectly uniform cells, a unit cell of WBK with periodic boundary conditions is analyzed by the finite element method. In comparison with experimental test results, it is found that the solution provides a good approximation of the mechanical properties of bulk WBK cellular metals except for Young's modulus. And also, the brazing joint size does not have any significant effect on the properties with an exception of an idealized thin joint.