• Title/Summary/Keyword: High-level radioactive waste disposal repository

Search Result 85, Processing Time 0.022 seconds

A review on the design requirement of temperature in high-level nuclear waste disposal system: based on bentonite buffer (고준위폐기물처분시스템 설계 제한온도 설정에 관한 기술현황 분석: 벤토나이트 완충재를 중심으로)

  • Kim, Jin-Seop;Cho, Won-Jin;Park, Seunghun;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.587-609
    • /
    • 2019
  • Short-and long-term stabilities of bentonite, favored material as buffer in geological repositories for high-level waste were reviewed in this paper in addition to alternative design concepts of buffer to mitigate the thermal load from decay heat of SF (Spent Fuel) and further increase the disposal efficiency. It is generally reported that the irreversible changes in structure, hydraulic behavior, and swelling capacity are produced due to temperature increase and vapor flow between $150{\sim}250^{\circ}C$. Provided that the maximum temperature of bentonite is less than $150^{\circ}C$, however, the effects of temperature on the material, structural, and mineralogical stability seems to be minor. The maximum temperature in disposal system will constrain and determine the amount of waste to be disposed per unit area and be regarded as an important design parameter influencing the availability of disposal site. Thus, it is necessary to identify the effects of high temperature on the performance of buffer and allow for the thermal constraint greater than $100^{\circ}C$. In addition, the development of high-performance EBS (Engineered Barrier System) such as composite bentonite buffer mixed with graphite or silica and multi-layered buffer (i.e., highly thermal-conductive layer or insulating layer) should be taken into account to enhance the disposal efficiency in parallel with the development of multilayer repository. This will contribute to increase of reliability and securing the acceptance of the people with regard to a high-level waste disposal.

The State of the Technology: Application of Cementitious Materials to Deep Repository Tunnels for Radioactive Waste Disposal (방사성폐기물의 심지층 처분터널에서의 시멘트 물질 적용에 관한 기술현황)

  • Kim, Jin-Seop;Kwon, Sang-Ki;Cho, Won-Jin;Cho, Gye-Chun
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.373-387
    • /
    • 2009
  • Considering the current construction technology and research status of deep repository tunnels for radioactive waste disposal, it is inevitable to use cementitious materials in spite of serious concern about their long-term environmental stability. Thus, it is an emerging task to develop low pH cementitious materials. This study reviews the state of the technology on low pH cements developed in Sweden, Switzerland, France, and Japan as well as in Finland which is constructing a real deep repository site for high-level radioactive waste disposal. Considering the physical and chemical stability of bentonite which acts as a buffer material, a low pH cement limits to $pH{\leq}11$ and pozzolan-type admixtures are used to lower the pH of cement. To attain this pH requirement, silica fume, which is one of the most promising admixtures, should occupy at least 40 wt% of total dry materials in cement and the Ca/Si ratio should be maintained below 0.8 in cement. Additionally, selective super-plasticizer needs to be used because a high amount of water is demanded from the use of a large amount of silica fume.

Case Studies on the Experiments for Long-Term Shear Behavior of Rock Discontinuities (암반 내 불연속면의 장기 전단 거동 평가를 위한 고찰)

  • Juhyi Yim;Saeha Kwon;Seungbeom Choi;Taehyun Kim;Ki-Bok Min
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.10-28
    • /
    • 2023
  • Long-term shear behavior of the rock discontinuities should be analyzed and its stability should be evaluated to ensure the long-term stability of a high-level radioactive waste disposal repository. The long-term shear behavior of the discontinuities can be modeled with creep and RSF models. The shear creep test, velocity step test, and slide-hold-slide test can be performed to determine their model parameters or analyze the shear behavior by experiments under various conditions. Testing apparatuses for direct shear, triaxial compression, and biaxial shear were mainly used and improved to reproduce the thermo-hydro-mechanical conditions of local bedrock, and it was confirmed that the shear behavior could vary. In order to design a high-level radioactive waste disposal site in Korea, the long-term behavior of rock discontinuities should be investigated in consideration of rock types, thermo-hydro-mechanical conditions, metamorphism, and restoration of shear resistance.

A Prediction of Specific Heat Capacity for Compacted Bentonite Buffer (압축 벤토나이트 완충재의 비열 추정)

  • Yoon, Seok;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.199-206
    • /
    • 2017
  • A geological repository for the disposal of high-level radioactive waste is generally constructed in host rock at depths of 500~1,000 meters below the ground surface. A geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is indispensable to assure the disposal safety of high-level radioactive waste, and it can restrain the release of radionuclides and protect the canister from the inflow of groundwater. Since high temperature in a disposal canister is released to the surrounding buffer material, the thermal properties of the buffer material are very important in determining the entire disposal safety. Even though there have been many studies on thermal conductivity, there have been only few studies that have investigates the specific heat capacity of the bentonite buffer. Therefore, this paper presents a specific heat capacity prediction model for compacted Gyeongju bentonite buffer material, which is a Ca-bentonite produced in Korea. Specific heat capacity of the compacted bentonite buffer was measured using a dual probe method according to various degrees of saturation and dry density. A regression model to predict the specific heat capacity of the compacted bentonite buffer was suggested and fitted using 33 sets of data obtained by the dual probe method.

Analysis of the Disposal Tunnel and Disposal Pit Spacing for the Spent Fuel Repository Layout (사용후핵연료 지하 처분장 배치를 위한 처분공 및 처분터널 간격 분석)

  • Lee, Jong-Youl;Lee, Yang;Choi, Heui-Joo;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.4
    • /
    • pp.393-400
    • /
    • 2006
  • In design of a deep geological repository for the high level wastes, it is very important that the temperature of the bentonite block should not be over $100^{\circ}C$ to maintain the integrity of the bentonite buffer block from the decay heat. In this study, for the layout of the repository to meet the requirement, the analysis of the disposal tunnel and disposal pit spacing was carried out. To do this, based on the reference repository concept, several cases of cooling times and disposal tunnel and disposal pit spacing were compared. The thermal stabilities of the disposal systems were analyzed in terms of the cooling time and spacing. The results showed that it was more desirable to determine the layout of the repository in terms of disposal pit spacing than the disposal tunnel spacing. The results of these analyses can be used in the deep geological repository design. The detailed analyses with the exact site characteristics data will reduce the uncertainty of the results.

  • PDF

Post Closure Long Term Safely of the Initial Container Failure Scenario for a Potential HLW Repository (고준위 방사성폐기물 처분장 불량 용기 발생 시나리오에 대한 폐쇄후 장기 방사선적 안전성 평가)

  • 황용수;서은진;이연명;강철형
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.105-112
    • /
    • 2004
  • A waste container, one of the key components of a multi-barrier system in a potential high level radioactive waste (HLW) repository in Korea ensures the mechanical stability against the lithostatic pressure of a deep geologic medium and the swelling pressure of the bentonite buffer. Also, it delays potential release of radionuclides for a certain period of time, before it is corroded by intruding impurities. Even though the material of a waste container is carefully chosen and its manufacturing processes are under quality assurance processes, there is a possibility of initial defects in a waste container during manufacturing. Also, during the deposition of a waste container in a repository, there is a chance of an incident affecting the integrity of a waste container. In this study, the appropriate Features, Events, and Processes(FEP's) to describe these incidents and the associated scenario on radionuclide release from a container to the biosphere are developed. Then the total system performance assessment on the Initial waste Container Failure (ICF) scenario was carried out by the MASCOT-K, one of the probabilistic safety assessment tools KAERI has developed. Results show that for the data set used in this paper, the annual individual dose for the ICF scenario meets the Korean regulation on the post closure radiological safety of a repository.

  • PDF

Influence of EDZ on the Safety of a Potential HLW Repository

  • Hwang Yong-Soo;Kang Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.253-262
    • /
    • 2004
  • Construction of tunnels in a deep crystalline host rock for a potential High-Level Radioactive Waste(HLW) repository inevitably generates an excavation disturbed zone (EDZ). There have been a series of debates on whether a permeability in an EDZ increases or not and what would be the maximum depth of an EDZ. Recent studies show mixed opinions on permeability. However, there has been an international consensus on the thickness of an EDZ; 30 cm for TBM and 1 meter for controlled blast. One of the impacts of an EDZ is on determining the distance between adjacent deposition holes. The void gap by the excavation hinders relaxation of temperature profiles so that the current Korean reference designing distance between holes should be stretched out more to keep the maximum temperature in a buffer region below 100 degrees Celsius. The other impact of an EDZ is on the long-term post closure radiological safety. To estimate the impact, the reference scenario, the well scenario, is chosen. Released nuclides diffuse through a bentonite buffer region experiencing strong sorption and reach a fracture surrounded by a porous medium. Inside a fractured porous region, radionuclides migrate by advection and dispersion with matrix diffusion into a porous medium. Finally, they reach a well assumed to be a source of potable water for local residents. The annual individual dose is assessed on this well scenario to find out the significance of an EDZ. A profound sensitivity study was performed, but all results show that the impact is negligible. Even though the role of an EDZ turns out to be limited on overall safety assessment, still it is worthwhile to study the chemical role of an EDZ, such as a potential source for natural colloids, potential sealing of an open fracture by fine clay particles generated by the process of an EDZ, and alteration of a sorption mechanism by an EDZ in the future.

  • PDF

Analyses of the Double-Layered Repository Concepts for Spent Nuclear Fuels (사용후핵연료 심지층 처분장 복층개념 분석)

  • Lee, Jongyoul;Kim, Hyeona;Lee, Minsoo;Choi, Heui-Joo;Kim, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.151-159
    • /
    • 2017
  • A deep geological disposal at a depth of 500 m in stable host rock is considered to be the safest method with current technologies for disposal of spent fuels classified as high-level radioactive waste. The most important requirement is that the temperature of the bentonite buffer, which is a component of the engineered barrier, should not exceed $100^{\circ}C$. In Korea, the amount of spent fuel generated by nuclear power generation, which accounts for about 30% of the total electricity, is continuously increasing and accumulating. Accordingly, the area required to dispose of it is also increasing. In this study, various duplex disposal concepts were derived for the purpose of improving the disposal efficiency by reducing the disposal area. Based on these concepts, thermal analyses were carried out to confirm whether the critical disposal system requirements were met, and the thermal stability of the disposal system was evaluated by analyzing the results. The results showed that upward 75 m or downward 75 m apart from the reference disposal system location of 500 m depth would qualify for the double layered disposal concept. The results of this study can be applied to the establishment of spent fuel management policy and the design of practical commercial disposal system. Detailed analyses with data of a real disposal site are necessary.

An Influence Analysis on the Gap Space of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭 공간이 미치는 영향 분석)

  • Yoon, Seok;Lee, Changsoo;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.4
    • /
    • pp.19-26
    • /
    • 2021
  • The high-level radioactive waste (HLW) produced from nuclear power plants is disposed in a rock-mass at a depth of hundreds meters below the ground level. Since HLW is very dangerous to human being, it must be disposed of safely by the engineered barrier system (EBS). The EBS consists of a disposal canister, backfill material, buffer material, and so on. When the components of EBS are installed, gaps inevitably exist not only between the rock-mass and buffer material but also between the canister and buffer material. The gap can reduce water-retarding capacity and heat release efficiency of the buffer material, so it is necessary to investigate properties of gap-filling materials and to analyze gap spacing effect. Furthermore, there has been few researches considering domestic disposal system compared to overseas researches. In this reason, this research derived the peak temperature of the bentonite buffer material considering domestic disposal system based on the numerical analysis. The gap between the canister and buffer material had a minor effect on the peak temperature of the bentonite buffer material, but there was 40% difference of the peak temperature of the bentonite buffer material because of the gap existence between the buffer material and rock mass.

Introduction of Two-region Model for Simulating Long-Term Erosion of Bentonite Buffer (벤토나이트 완충재 장기 침식을 모사하기 위한 Two-region 모델 소개)

  • Jaewon Lee;Jung-Woo Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.228-243
    • /
    • 2023
  • Bentonite is widely recognized and utilized as a buffer material in high-level radioactive waste repositories, mainly due to its favorable characteristics such as swelling capability and low permeability. Bentonite buffers play an important role in ensuring the safe disposal of radioactive waste by providing a low permeability barrier and effectively preventing the migration of radionuclides into the surrounding rock. However, the long-term performance of bentonite buffers still remains a subject of ongoing research, and one of the main concerns is the erosion of the buffer induced by swelling and groundwater flow. The erosion of the bentonite buffer can significantly impact repository safety by compromising the integrity of buffer and leading to the formation of colloids that may facilitate the transport of radionuclides through groundwater, consequently elevating the risk of radionuclide migration. Therefore, it is very important to numerically quantify the erosion of bentonite buffer to evaluate the long-term performance of bentonite buffer, which is crucial for the safety assessment of high-level radioactive waste disposal. In this technical note, Two-region model is introduced, a proposed model to simulate the erosion behavior of bentonite based on a dynamic bentonite diffusion model, and quantitative evaluation is conducted for the bentonite buffer erosion with this model.