DOI QR코드

DOI QR Code

Analyses of the Double-Layered Repository Concepts for Spent Nuclear Fuels

사용후핵연료 심지층 처분장 복층개념 분석

  • Received : 2017.03.24
  • Accepted : 2017.06.12
  • Published : 2017.06.30

Abstract

A deep geological disposal at a depth of 500 m in stable host rock is considered to be the safest method with current technologies for disposal of spent fuels classified as high-level radioactive waste. The most important requirement is that the temperature of the bentonite buffer, which is a component of the engineered barrier, should not exceed $100^{\circ}C$. In Korea, the amount of spent fuel generated by nuclear power generation, which accounts for about 30% of the total electricity, is continuously increasing and accumulating. Accordingly, the area required to dispose of it is also increasing. In this study, various duplex disposal concepts were derived for the purpose of improving the disposal efficiency by reducing the disposal area. Based on these concepts, thermal analyses were carried out to confirm whether the critical disposal system requirements were met, and the thermal stability of the disposal system was evaluated by analyzing the results. The results showed that upward 75 m or downward 75 m apart from the reference disposal system location of 500 m depth would qualify for the double layered disposal concept. The results of this study can be applied to the establishment of spent fuel management policy and the design of practical commercial disposal system. Detailed analyses with data of a real disposal site are necessary.

고준위 방사성폐기물로 분류되는 사용후핵연료를 현재 기술로 가장 안전한 격리 방법으로는 500 m 심도의 안정한 암반에 심지층 처분하는 방법으로, 가장 중요한 요건은 공학적방벽인 완충재의 온도가 $100^{\circ}C$를 초과하지 않도록 시스템을 설계하는 것이다. 국내의 경우 전체 전력 소요량의 약 30% 정도를 차지하고 있는 원자력발전으로 발생되는 사용후핵연료의 양은 지속적으로 증가하여 누적되고 있어, 이들을 처분하기 위한 소요면적도 증가하고 있다. 따라서, 본 연구에서는 처분면적을 감소시킴으로써 처분효율을 향상시키기 위한 목적으로 다양한 복층처분 개념을 도출하였다. 이를 바탕으로 중요한 처분시스템 요건 만족여부를 확인하기 위하여 열해석을 수행하고 그 결과를 분석하여 처분시스템 열적 안정성을 평가하였다. 평가결과, 기준시스템 위치인 500 m 심도로부터 상부 또는 하부로 75 m를 이격한 심도에 복층으로 처분시스템 구축이 가능하였으며, 실제 부지특성자료에 따른 상세 분석이 요구된다. 본 연구결과는 사용후핵연료 관리정책 수립 및 실제 처분시스템 설계에 활용될 것으로 사료된다.

Keywords

References

  1. The Atomic Energy Promotion Commission (AEPC), The National Basic Plan for HLW Management, MOTIE, July 25, 2016 (2016).
  2. J.Y. Lee, D. Cho, H. Choi, and J. Choi, Concept of a Korean Reference Disposal System for Spent Fuels, J. Nucl. Sci. Technol, 44(12), 1565-1573 (2007). https://doi.org/10.1080/18811248.2007.9711407
  3. Korea Atomic Energy Research Institute (KAERI), Korean Reference HLW Disposal System, Korea Atomic Energy Research Institute, KAERI/TR-3563/2008, 23-35 (2008).
  4. Jose L. Carvalho and Charles M. Steed, Thermo-Mechanical Analysis of a Multi-Level Repository for Used Nuclear Fuel, NWMO TR-2012-19 September 2012 (2012).
  5. Korea Atomic Energy Research Institute (KAERI), Preliminary Conceptual Design of the Korean Reference Repository System for HLW in Vertical Emplacement, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-3012/2005 (2005).
  6. Korea Atomic Energy Research Institute (KAERI), Reference Spent Fuel and Its Source Terms for a Design of Deep Geological Disposal System, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-3084/2005 (2005).
  7. D.K. Cho, S.K. Yoon, H.J. Choi, J.W. Choi, and W.I. Ko, Reference spent nuclear fuel for pyro-processing facility design, J. Korean Radioact. Waste Soc., 6(3), 225-232 (2008).
  8. Korea Atomic Energy Research Institute (KAERI), Evaluation on thermal performance and thermal dimensioning of direct deep geological disposal system for high burn-up spent nuclear fuel, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-5230/2013 (2013).
  9. Markku Juvankoski and Kari Ikonen, Buffer Production Line 2012 - Design, Production and Initial State of the Buffer, POSIVA 2012-17, POSIVA OY, December 2012 (2012).
  10. Svensk Karnbranslehantering AB (SKB), Buffer and backfill process report for the safety assessment SRCan, SKB Technical Report, TR-06-18 (2006).
  11. Dassault systems, Abaqus/CAE 6.14 User's manual, Dassault systems simulia corp. (2014).
  12. Korea Atomic Energy Research Institute (KAERI), Geological Disposal of Pyroprocessed Waste from PWR Spent Nuclear Fuel in Korea, KAERI Technical Report, KAERI/TR-4525/2011 (2011).
  13. J.Y. Lee, D.K. Cho, H.J. Choi, J.W. Choi, and L.M. Wang, Analyses of disposal efficiency based on nuclear spent fuels cooling time and disposal tunnel/pit spacing for the design of a geological repository, Prog. Nucl. Energy, 53(04), 361-367 (2011). https://doi.org/10.1016/j.pnucene.2011.01.005
  14. F. Kober, I. Gaus, S. Birkholzer, and S. Vomvoris, 18 Years of heating a full scale EBS at $100^{\circ}C$ and possible applications at higher temperatures ("hotFEBEX" at > $150^{\circ}C$), CLAY CONFERENCE, BRUSSELS, 52-53, March 23-26, 2015 (2015).

Cited by

  1. 다층 심지층처분장 열해석에 미치는 암반손상대의 영향 vol.17, pp.1, 2017, https://doi.org/10.7733/jnfcwt.2019.17.1.75