• 제목/요약/키워드: High-k thin film transistor

검색결과 207건 처리시간 0.026초

Photoalignment of Liquid Crystal on Silicon Microdisplay

  • Zhang, Baolong;Li, K. K.;Huang, H. C.;Chigrinov, V.;Kwok, H. S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.295-298
    • /
    • 2003
  • Reflective mode liquid crystal on silicon (LCoS) microdisplay is the major technology that can produce extremely high-resolution displays. A very large number of pixels can be packed onto the CMOS circuit with integrated drivers that can be projected to any size screen. Large size direct-view thin film transistor (TFT) LCDs becomes very difficult to make and to drive as the information content increases. However, the existing LC alignment technology for the LCoS cell fabrication is still the mechanical rubbing method, which is prone to have minor defects that are not visible normally but can be detrimental if projected to a large screen. In this paper, application of photo-alignment to LCoS fabrication is presented. The alignment is done by three-step exposure process. A MTN $90^{\circ}$ mode is chose as to evaluate the performance of this technique. The comparison with rubbing mode shows the performance of photo-alignment is comparable and even better in some aspect, such as sharper RVC curve and higher contrast ratio.

  • PDF

2.22-inch qVGA a-Si TFT-LCD Using a 2.5 um Fine-Patterning Technology by Wet Etch Process

  • Lee, Jae-Bok;Park, Sun;Heo, Seong-Kweon;You, Chun-Ki;Min, Hoon-Kee;Kim, Chi-Woo
    • Journal of Information Display
    • /
    • 제7권3호
    • /
    • pp.1-4
    • /
    • 2006
  • 2.22-inch qVGA $(240{\times}320)$ amorphous silicon thin film transistor liquid active matrix crystal display (a-Si TFT-AMLCD) panel has been successfully demonstrated employing a 2.5 um fine-patterning technology by a wet etch process. Higher resolution 2.22-inch qVGA LCD panel with an aperture ratio of 58% can be fabricated as the 2.5 um fine pattern formation technique is integrated with high thermal photo-resist (PR) development. In addition, a novel concept of unique a-Si TFT process architecture, which is advantageous in terms of reliability, was proposed in the fabrication of 2.22-inch qVGA LCD panel. Overall results show that the 2.5 um fine-patterning is a considerably significant technology to obtain higher aperture ratio for higher resolution a-Si TFT-LCD panel realization.

2.22-inch qVGA ${\alpha}$-Si TFT-LCD Using a 2.5 um Fine-Patterning Technology by Wet Etch Process

  • Lee, J.B.;Park, S.;Heo, S.K.;You, C.K.;Min, H.K.;Kim, C.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1649-1652
    • /
    • 2006
  • 2.22-inch qVGA $(240{\times}320)$ amorphous silicon thin film transistor liquid active matrix crystal display (${\alpha}$- Si TFT-AMLCD) panel has been successfully demonstrated employing a 2.5 um fine-patterning technology by a wet etch process. Higher resolution 2.22-inch qVGA LCD panel with an aperture ratio of 58% can be fabricated because the 2.5 um fine pattern formation technique is combined with high thermal photo-resist (PR) development. In addition, a novel concept of unique ${\alpha}$-Si TFT process architecture, which is advantageous in terms of reliability, was proposed in the fabrication of 2.22-inch qVGA LCD panel. Overall results show that the 2.5 um finepatterning is a considerably significant technology to obtain higher aperture ratio for higher resolution ${\alpha}$-Si TFT-LCD panel realization.

  • PDF

Fabrication of micro injection mold with modified LIGA micro-lens pattern and its application to LCD-BLU

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.165-169
    • /
    • 2007
  • The light guide plate (LGP) of LCD-BLU (Liquid Crystal Display-Back Light Unit) is usually manufactured by forming numerous dots by etching process. However, the surface of those etched dots of LGP is very rough due to the characteristics of etching process, so that its light loss is relatively high due to the dispersion of light. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched-dot patterned LGP, micro-lens pattern was tested to investigate the possibility of replacing etched pattern in the present study. The micro-lens pattern fabricated by the modified LiGA with thermal reflow process was applied to the optical design of LGP. The attention was paid to the effects of different optical pattern type (i.e. etched dot, micro-lens). Finally, the micro-lens patterned LGP showed better optical qualities than the one made by the etched-dot patterned LGP in luminance.

A study on the fabrication method of middle size LGP using continuous micro-lenses made by LIGA reflow

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.171-176
    • /
    • 2007
  • LCD-BLU (Liquid Crystal Display-Back Light Unit) of medium size is usually manufactured by forming numerous dots with $50{\sim}300\;{\mu}m$ in diameter by etching process and V-grove shape with $50\;{\mu}m$ in height by mechanical cutting process. However, the surface of the etched dots is very rough due to the characteristics of the etching process and V-cutting needs rather high cost. Instead of existing optical pattern made by etching and mechanical cutting, 3-dimensional continuous micro-lens of $200\;{\mu}m$ in diameter was applied in the present study. The continuous micro-lens pattern fabricated by modified LIGA with thermal reflow process was tested to this new optical design of LGP. The manufacturing process using LIGA-reflow is made up of three stages as follows: (i) the stage of lithography, (ii) the stage of thermal reflow process and (iii) the stage of electroplating. The continuous micro-lens patterned LGP was fabricated with injection molding and its test results showed the possibility of commercial use in the future.

Interfacial Electronic Structures of Poly[N-9''-hepta-decanyl-2,7-carbazole-alt- 5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] and [6,6]-phenyl C60 Butyric Acid Methyl Ester

  • Lee, Jung-Han;Seo, Jung-Hwa;Schlaf, Rudy;Kim, Kyoung-Joong;Yi, Yeon-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.277-277
    • /
    • 2012
  • PCDTBT (Poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]) is an attractive material as a semiconducting polymer for organic thin film transistor (OTFT) and organic solar cell (OSC). High power conversion efficiency (~6%) under simulated AM 1.5G solar illumination of bulk-heterojunction solar cell with PCDTBT and [6,6]-phenyl C60 butyric acid methyl ester (PC61BM) blend was reported. In OSC, it is known that the band alignment at the interface between donor and acceptor is critical. Therefore, we studied the interfacial electronic structures of PCDTBT and PC61BM. The polymers are deposited by electro-spray on gold and In-situ x-ray and ultraviolet photoelectron spectroscopy measurements revealed the interfacial electronic structures. We obtained the energy level alignment between two materials and the different interface formation was observed with different deposition order.

  • PDF

피에조를 이용한 코로나 방전과 펄스교류 코로나 방전을 이용한 정전기 제거장치의 비교 연구 (A Comparative Study on the Electrostatic Eliminator of Piezo Type Ionizer and Pulse AC Corona Type Ionizer)

  • 권승열;이동훈;최재욱
    • 한국안전학회지
    • /
    • 제24권6호
    • /
    • pp.50-54
    • /
    • 2009
  • Ionizer is used for improving manufacturing process and reducing inferior goods in the clean room. As a general rule, neutralization of the electrostatic charge is most important to make TFT-LCD, PDP and OLED. Pulse AC-static eliminator with output voltage of about 10.5kV has been used these days as neutralization device. But this device has a problem with lower performance which was caused by particles-adhesion on the electrode when it has been used for a long time. So we studied to solve the problem with lower performance using high Frequency(72kHz) static eliminator which was produced by Piezo transformer device, and compared Pulse-AC type with Piezo-electronic device such as decay time and ion balance for 10 weeks periods. As a result of this study, we found that Piezo transformer device has been maintained normal condition for 10 weeks. Also, we made the rule by this study, normally Piezo transformer device has to clean the electrode during every 11th weeks.

$BCl_3$/Ar 플라즈마에서 $Cl_2$ 첨가에 따른 TiN 박막의 식각 특성 (Etch characteristics of TiN thin film adding $Cl_2$ in $BCl_3$/Ar Plasma)

  • 엄두승;강찬민;양설;김동표;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.168-168
    • /
    • 2008
  • Dimension of a transistor has rapidly shrunk to increase the speed of device and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate dioxide layer and low conductivity characteristic of poly-Si gate in nano-region. To cover these faults, study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$, and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-Si gate is not compatible with high-k materials for gate-insulator. Poly Si gate with high-k material has some problems such as gate depletion and dopant penetration problems. Therefore, new gate structure or materials that are compatible with high-k materials are also needed. TiN for metal/high-k gate stack is conductive enough to allow a good electrical connection and compatible with high-k materials. According to this trend, the study on dry etching of TiN for metal/high-k gate stack is needed. In this study, the investigations of the TiN etching characteristics were carried out using the inductively coupled $BCl_3$-based plasma system and adding $Cl_2$ gas. Dry etching of the TiN was studied by varying the etching parameters including $BCl_3$/Ar gas mixing ratio, RF power, DC-bias voltage to substrate, and $Cl_2$ gas addition. The plasmas were characterized by optical emission spectroscopy analysis. Scanning electron microscopy was used to investigate the etching profile.

  • PDF

A Method for Improving Resolution and Critical Dimension Measurement of an Organic Layer Using Deep Learning Superresolution

  • Kim, Sangyun;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • 제2권2호
    • /
    • pp.153-164
    • /
    • 2018
  • In semiconductor manufacturing, critical dimensions indicate the features of patterns formed by the semiconductor process. The purpose of measuring critical dimensions is to confirm whether patterns are made as intended. The deposition process for an organic light emitting diode (OLED) forms a luminous organic layer on the thin-film transistor electrode. The position of this organic layer greatly affects the luminescent performance of an OLED. Thus, a system for measuring the position of the organic layer from outside of the vacuum chamber in real-time is desired for monitoring the deposition process. Typically, imaging from large stand-off distances results in low spatial resolution because of diffraction blur, and it is difficult to attain an adequate industrial-level measurement. The proposed method offers a new superresolution single-image using a conversion formula between two different optical systems obtained by a deep learning technique. This formula converts an image measured at long distance and with low-resolution optics into one image as if it were measured with high-resolution optics. The performance of this method is evaluated with various samples in terms of spatial resolution and measurement performance.

용액 공정을 이용한 High-k 게이트 절연막을 갖는 고성능 InGaZnO Thin Film Transistors의 전기적 특성 평가

  • 소준환;박성표;이인규;이기훈;신건조;이세원;조원주
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.339-339
    • /
    • 2012
  • 지난 몇 년 동안, 투명 비정질 산화물 반도체는 유기 발광 다이오드, 플렉서블 전자 소자, 솔라 셀, 바이오 센서 등 많은 응용분야에 연구되고 있다. 투명 비정질 산화물 반도체 그룹들 중, 특히 비정질 IGZO 박막 트랜지스터는 비정질 상태임에도 불구하고 높은 이동도와 낮은 동작 전압으로 훌륭한 소자 특성을 보인다. 이러한 고성능의 IGZO 박막 트랜지스터는 RF 마그네트론 스퍼터링이나 pulsed laser deposition과 같은 고진공 장비를 이용하여 이미 여러 그룹에서 제작되고 발표되었다. 하지만 진공 증착 시스템은 제조 비용의 절감이나 디스플레이 패널의 대면적화에 큰 걸림돌이 되고 있고, 이러한 문제점을 극복하기 위해서 용액 공정은 하나의 해결책이 될 수 있다. 용액 공정의 가장 큰 장점으로는 저온 공정이 가능하기 때문에 글라스나 플라스틱 기판에서 대면적으로 제작할 수 있고 진공 장비가 필요없기 때문에 제조 비용을 획기적으로 절감시킬 수 있다. 본 연구에서는 high-k 게이트 절연막과 IGZO 채널 층을 용액 공정을 이용하여 박막 트랜지스터를 제작하고 그에 따른 전기적 특성을 분석하였다. IGZO의 몰 비율은 In, Ga, Zn 순으로 각각 0.2 mol, 0.1 mol, 0.1 mol로 제작하였고, high-k 게이트 절연막으로는 Al2O3, HfO2, ZrO2을 제작하였다. 또한, 용액 공정 IGZO TFT를 제작하기 전, 용액 공정 high-k 게이트 절연막 캐패시터를 제작하여 그 특성을 분석하였다. 다양한 용액 공정 high-k 게이트 절연막 중, 용액공정 HfO2를 이용한 IGZO TFT는 228.3 [mV/dec]의 subthreshold swing, 18.5 [$cm^2/V{\cdot}s$]의 유효 전계 이동도, $4.73{\times}106$의 온/오프 비율을 보여 매우 뛰어난 전기적 특성을 확인하였다.

  • PDF