• Title/Summary/Keyword: High-grid resolution

Search Result 217, Processing Time 0.026 seconds

Impact Assessment of Spatial Resolution of Radar Rainfall and a Distributed Hydrologic Model on Parameter Estimation (레이더 강우 및 분포형 수문모형의 공간해상도가 매개변수 추정에 미치는 영향 평가)

  • Noh, Seong Jin;Choi, Shin Woo;Choi, Yun Seok;Kim, Kyung Tak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1443-1454
    • /
    • 2014
  • In this study, we assess impact of spatial resolution of radar rainfall and a distributed hydrologic model on parameter estimation and rainfall-runoff response. Radar data measured by S-band polarimetric radar located at Mt. Bisl in the year of 2012 are used for the comparative study. As different rainfall estimates such as R-KDP, R-Z, and R-ZDR show good agreement with ground rainfall, R-KDP are applied for rainfall-runoff modeling due to relatively high accuracy in terms of catchment averaged and gauging point rainfall. GRM (grid based rainfall-runoff model) is implemented for flood simulations at the Geumho River catchment with spatial resolutions of 200m, 500m, and 1000m. Automatic calibration is performed by PEST (model independent parameter estimation tool) to find suitable parameters for each spatial resolution. For 200m resolution, multipliers of overlandflow and soil hydraulic conductivity are estimated within stable ranges, while high variations are found from results for 500m and 1000m resolution. No tendency is found in the estimated initial soil moisture. When parameters estimated for different spatial resolution are applied for other resolutions, 200m resolution model shows higher sensitivity compared to 1000m resolution model.

Estimation of Fine-Scale Daily Temperature with 30 m-Resolution Using PRISM (PRISM을 이용한 30 m 해상도의 상세 일별 기온 추정)

  • Ahn, Joong-Bae;Hur, Jina;Lim, A-Young
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • This study estimates and evaluates the daily January temperature from 2003 to 2012 with 30 m-resolution over South Korea, using a modified Parameter-elevation Regression on Independent Slopes Model (K-PRISM). Several factors in K-PRISM are also adjusted to 30 m grid spacing and daily time scales. The performance of K-PRISM is validated in terms of bias, root mean square error (RMSE), and correlation coefficient (Corr), and is then compared with that of inverse distance weighting (IDW) and hypsometric methods (HYPS). In estimating the temperature over Jeju island, K-PRISM has the lowest bias (-0.85) and RMSE (1.22), and the highest Corr (0.79) among the three methods. It captures the daily variation of observation, but tends to underestimate due to a high-discrepancy in mean altitudes between the observation stations and grid points of the 30 m topography. The temperature over South Korea derived from K-PRISM represents a detailed spatial pattern of the observed temperature, but generally tends to underestimate with a mean bias of -0.45. In bias terms, the estimation ability of K-PRISM differs between grid points, implying that care should be taken when dealing with poor skill area. The study results demonstrate that K-PRISM can reasonably estimate 30 m-resolution temperature over South Korea, and reflect topographically diverse signals with detailed structure features.

Large eddy simulation using a curvilinear coordinate system for the flow around a square cylinder

  • Ono, Yoshiyuki;Tamura, Tetsuro
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.369-378
    • /
    • 2002
  • The application of Large Eddy Simulation (LES) in a curvilinear coordinate system to the flow around a square cylinder is presented. In order to obtain sufficient resolution near the side of the cylinder, we use an O-type grid. Even with a curvilinear coordinate system, it is difficult to avoid the numerical oscillation arising in high-Reynolds-number flows past a bluff body, without using an extremely fine grid used. An upwind scheme has the effect of removing the numerical oscillations, but, it is accompanied by numerical dissipation that is a kind of an additional sub-grid scale effect. Firstly, we investigate the effect of numerical dissipation on the computational results in a case where turbulent dissipation is removed in order to clarify the differences between the effect of numerical dissipation. Next, the applicability and the limitations of the present method, which combine the dynamic SGS model with acceptable numerical dissipation, are discussed.

Infrastructure of Grid-based Distributed Remotely Sensed Images Processing Environment and its Parallel Intelligence Algorithms

  • ZHENG, Jiang;LUO, Jian-Cheng;Hu, Cheng;CHEN, Qiu-Xiao
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1284-1286
    • /
    • 2003
  • There is a growing demand on remotely sensed and GIS data services in modern society. However, conventional WEB applications based on client/server pattern can not meet the criteria in the future . Grid computing provides a promising resolution for establishing spatial information system toward future applications. Here, a new architecture of the distributed environment for remotely sensed data processing based on the middleware technology was proposed. In addition, in order to utilize the new environment, a problem had to be algorithmically expressed as comprising a set of concurrently executing sub-problems or tasks. Experiment of the algorithm was implemented, and the results show that the new environmental can achieve high speedups for applications compared with conventional implementation.

  • PDF

Development of a Virtual Frisch-Grid CZT Detector Based on the Array Structure

  • Kim, Younghak;Lee, Wonho
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Background: Cadmium zinc telluride (CZT) is a promising material because of a high detection efficiency, good energy resolution, and operability at room temperature. However, the cost of CZT dramatically increases as its size increases. In this study, to achieve a large effective volume with relatively low cost, an array structure comprised of individual virtual Frisch-grid CZT detectors was proposed. Materials and Methods: The prototype consisted of 2 × 2 CZTs, a holder, anode and cathode printed circuit boards (PCBs), and an application-specific integrated circuit (ASIC). CZTs were used and the non-contacting shielding electrode method was applied for virtual Frisch-grid effect. An ASIC was used, and the holder and the PCBs were fabricated. In the current system, because the CZTs formed a common cathode, a total of 5 channels were assigned for data processing. Results and Discussion: An experiment using 137Cs at room temperature was conducted for 10 minutes. Energy and timing information was acquired and the depth of interaction was calculated by the timing difference between the signals of both electrodes. Based on obtained three-dimensional position information, the energy correction was carried out, and as a result the energy spectra showed the improvements. In addition, a Compton image was reconstructed using the iterative method. Conclusion: The virtual Frisch-grid CZT detector based on the array structure was developed and the energy spectra and the Compton image were successfully acquired.

A Study on Grid Adaptation by Poisson Equation (푸아송 방정식을 이용한 격자 적응에 대한 연구)

  • 맹주성;문영준;김종태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.182-189
    • /
    • 1993
  • To improve the resolution of complex flow field features, grid adaptation scheme of Anderson has been revised, which was based on the Poisson grid generator of Thompson. Anderson's original scheme adapts the grid to solution automatically, but if flow field is more or less complex, then the adaptivity is weak. So the technique of using threshold which is used in unstructured grid system is adopted. The regions of large variation in the solution are marked by marking function which has the property of total variation of the solution, and these regions have same values of weight but other regions are neglected. This updated method captures shocks clearly and sharpy. Four examples are demonstrated, (1) Hypersonic flow past a blunt body, (2) High speed inlet analysis, (3) Supersonic flow of M=1.4 over a 4% biconvex airfoil in a channel, (4) Hypersonic shock-on-shock interaction at M=8.03.

Simulation of Grape Downy Mildew Development Across Geographic Areas Based on Mesoscale Weather Data Using Supercomputer

  • Kim, Kyu-Rang;Seem, Robert C.;Park, Eun-Woo;Zack, John W.;Magarey, Roger D.
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.111-118
    • /
    • 2005
  • Weather data for disease forecasts are usually derived from automated weather stations (AWS) that may be dispersed across a region in an irregular pattern. We have developed an alternative method to simulate local scale, high-resolution weather and plant disease in a grid pattern. The system incorporates a simplified mesoscale boundary layer model, LAWSS, for estimating local conditions such as air temperature and relative humidity. It also integrates special models for estimating of surface wetness duration and disease forecasts, such as the grapevine downy mildew forecast model, DMCast. The system can recreate weather forecasts utilizing the NCEP/NCAR reanalysis database, which contains over 57 years of archived and corrected global upper air conditions. The highest horizontal resolution of 0.150 km was achieved by running 5-step nested child grids inside coarse mother grids. Over the Finger Lakes and Chautauqua Lake regions of New York State, the system simulated three growing seasons for estimating the risk of grape downy mildew with 1 km resolution. Outputs were represented as regional maps or as site-specific graphs. The highest resolutions were achieved over North America, but the system is functional for any global location. The system is expected to be a powerful tool for site selection and reanalysis of historical plant disease epidemics.

A HIGH-RESOLUTION NUMERICAL ANALYSIS OF SHOCK FOCUSING IN CONCAVE REFLECTORS (반사경 내부 유동의 초점 형성에 관한 고해상도 수치 해석)

  • Jung, Y.G.;Chang, K.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.170-175
    • /
    • 2009
  • Shock focusing is related with explosive release of shock wave energy on a narrow spot in a short duration of time triggering a spontaneous high pressure near the focal point. It is well known that reflection of planar incident shock wave from the metallic concave mirror such as ellipsoidal, paraboloidal or hemispherical cavities will focus on a focal point. We intend to improve the computational results using a wave propagation algorithm and to resolve the mushroom-like structure. For computation of the concave cavity flow, it is not easy to use a single-block mesh because of the many singular points in geometry and coordinates. We have employed a uniform Cartesian-grid method for the wave propagation algorithm.

  • PDF

A Study on the Flow Characteristics of Cubic Cavity with driven Flow (구동류를 갖는 입방형 캐비티의 유동특성에 관한 연구)

  • 최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.935-941
    • /
    • 1998
  • Experiments were carried out for a cubic cavity flow. Contrinuous shear stress is supplied by driven flow for high Reynolds number and three kinds of aspect ratios. Velocity vectors are obtained by PIV and they are used as velocity components for Poisson equation for pressure, Related boundary conditions and no-slip condition at solid wall and the linear velocity extrapolation on the upper side of cavity are well examined for the present study. For calculation of pressure resolution of grid is basically $40{\times}40$ and 2-dimensional uniform mesh using MSC staggered grid is adopted. The flow field within the cavity maintains a forced-vortex formation and almost of the shear stress from the driving inflow is transformed into rotating flow energy and the size of the distorted forced-vortex increases with increment of Reynolds number

  • PDF

A PDR model for UV heated outflow walls around protostars

  • Lee, Seok-Ho;Lee, Jeong-Eun;Park, Young-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.114.2-114.2
    • /
    • 2011
  • We have developed a PDR code to reproduce the high rotational transitions of CO observed with Herschel-PACS. Part of these high-J CO line emission is produced by UV heated outflow walls around protostars. The local FUV radiation flux is calculated by using Monte Carlo method in (${\gamma}$, ${\alpha}$) grid taking anisotropic scattering into account. Kinetic temperature and Abundance of molecules were computed self-consistently. CO Line fluxes are calculated using RIG. We compare our PDR model with the results by Visser et al (2011) to show that the derived FUV radiation field strength can be affected by the grid resolution near the outflow wall and dust scattering.

  • PDF