• Title/Summary/Keyword: High-frequency induction heated combustion

Search Result 18, Processing Time 0.059 seconds

Mechanical Properties and Fabrication of Nanostructured Mg2SiO4-MgAl2O4 Composites by High-Frequency Induction Heated Combustion (기계적 활성화된 분말로부터 고주파유도 가열 연소합성에 의한 나노구조 Mg2SiO4-MgAl2O4 복합재료 제조 및 기계적 특성)

  • Shon, In-Jin;Kang, Hyun-Su;Hong, Kyung-Tae;Doh, Jung-Mann;Yoon, Jin-Kook
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.614-618
    • /
    • 2011
  • Nanopowders of MgO, $Al_2O_3$ and $SiO_2$ were made by high energy ball milling. The rapid sintering of nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites was investigated by a high-frequency induction heating sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. Highly dense nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites were produced with simultaneous application of 80MPa pressure and induced output current of total power capacity (15 kW) within 2min. The sintering behavior, gain size and mechanical properties of $MgAl_2O_4-Mg_2SiO_4$ composites were investigated.

Synthesis of Dense $WSi_2\;and\;WSi_2-xvol.%SiC$ composites by High- Frequency Induction Combustion and Its Mechanical Properties

  • Oh Dong-Young;Kim Hwan-Cheol;Yoon Jin-Kook;Shon In-Jin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2004.11a
    • /
    • pp.94-95
    • /
    • 2004
  • Using the high-frequency induction heated combustion method, the simultaneous synthesis and densification of $WSi_2-xvol.%SiC$ (x=0, 10, 20, 30) composites was accomplished using elemental powders of W, Si and C. A complete synthesis and densification of the materials was achieved in one step within a duration of 2 min. The relative density of the composite was up to 97% for the applied pressure of 60MPa and the induced current. The average grain size of $WSi_2$ are 6.9, 6.1, and $5.0{\mu}m$, respectively. The hardness and the fracture toughness increases with increasing SiC content. The maximum values for the hardness and fracture toughness are $1840kg/mm^2\;and\;5.1MPa{\cdot}m^{1/2}\;at\;WSi_2-30vol.%SiC$.

  • PDF

Fabrication of Nanostructured MoSi2-TaSi2 Composite by High-Frequency Induction Heating and its Mechanical Properties (고주파유도 가열에 의한 나노구조 MoSi2-TaSi2 복합재료 제조 및 기계적 특성)

  • Ko, In-Yong;Park, Na-Ra;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.369-374
    • /
    • 2012
  • Nanopowders of Mo, Ta and Si were made by high-energy ball milling. A dense nanostructured $MoSi_2-TaSi_2$ composite was sintered by the high-frequency induction heated combustion method within 2 minutes from mechanically activated powder of Mo, Ta and Si. A highly dense $MoSi_2-TaSi_2$ composite was produced under simultaneous application of a 80 MPa pressure and the induced current. Mechanical properties and microstucture were investigated. The hardness and fracture toughness of the $MoSi_2-TaSi_2$ composite were $1200kg/mm^2$ and $3.5MPa.m^{1/2}$, respectively. The mechanical properties were higher than those of monolithic $MoSi_2$.

Fabrication of 4.25 Co0.53Fe0.47-Al2O3 Composite by High FrequencyInduction Heated Combustion Synthesis and Sintering (펄스 전류 활성 연소합성과 소결에 의한 4.25 Co0.53Fe0.47-Al2O3 복합재료제조)

  • Lee, Dong-Mok;Jo, Kwang-Myoung;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.344-348
    • /
    • 2009
  • Dense $4.25Co_{0.53}Fe_{0.47}-Al_{2}O_{3}$ composite was simultaneously synthesized and consolidated by pulsed current activated combustion method within 2 min from mechanically activated powders. Consolidation was accomplished under the combined effects of a pulsed current and mechanical pressure. Dense $4.25Co_{0.53}Fe_{0.47}-Al_{2}O_{3}$ with relative density of up to 96% was produced under simultaneous application of 80 MPa pressure and the pulsed current. Fracture toughness and hardness of the composite are $6MPa{\cdot}m^{1/2}$ and $570kg/mm^{2}$ respectively.

Implementation of Low Frequency Welding Pre-heating System Using Induction Heating (유도가열 기법을 이용한 저주파 용접예열 시스템 구현)

  • Yang, Juyeong;Kim, Soochan;Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • Welding preheating means that the surface of the base material to which the metal is welded before the main welding is heated to a constant temperature. It prevents the cracks of the adjacent influences such as reduction of material hardening degree by controlling the cooling rate, suppression of segregation of impurities, prevention of thermal deformation, and moisture removal. For this reason, it is a necessary operation for high quality welding. Induction heating is an efficient heating method that converts electric energy into heat energy by applying electromagnetic induction phenomenon. Compared with combustion heat generated by gas and liquid, it is clean, stable, and economical as well as rapid heating. It can be heated regardless of the shape, depth and material of the heating body by modifying the shape of the frequency and the coil with a simple structure. In this paper, we implemented a low frequency welding preheating system using induction heating technique and observed the temperature changes of coil resistance, inductance and automotive transmission parts according to the height of each transmission in winding coil for three kinds of automotive transmission parts. We confirmed that the change of current is a very important factor in the low frequency heating.

Mechanical properties and consolidation of none-structured $TaSi_2-SiC$ composite by high frequency induction heated combustion synthesis (고주파유도가열 연소합성법에 의한 치밀한 나노구조의 $TaSi_2-SiC$ 복합체 제조 및 기계적 성질)

  • Kim Dong-Gi;Son In-Jin;Yun Jin-Guk;Hong Gyeong-Tae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.04a
    • /
    • pp.46-47
    • /
    • 2006
  • 고주파유도가열 연소합성법으로 60MPa의 기계적 압력과 고주파유도가열 장치의 총용량 (15KW)의 90%의 출력을 가해 75초의 짧은 시간에 97%이상의 상대밀도를 갖는 $TaSi_2-SiC$ 복합체를 제조하였으며, 제조된 시편의 미세조직 사진으로부터 선형분석법으로 측정한 $TaSi_2-SiC$ 의 평균 결정립크기는 각각 250nm 과 60nm 이었다. 또한 제조된 시편을 연마하여 비커스 경도계를 이용하여 기계적 특성평가를 한 결과 경도 와 파괴인성은 각각 $1366Kg/mm^2$$305MPam^{1/2}$ 이었다.

  • PDF

Synthesis of Dense $ZrSi_2-SiC$ Composites by High-Frequency Induction Heated Combustion and Its Mechanical Properties (고주파 유도가열 소결법에 의한 치밀한 $ZrSi_2-SiC$ 합성 및 기계적 특성)

  • Park Hyeon-Guk;Son In-Jin;Yun Jin-Guk;Hong Gyeong-Tae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.04a
    • /
    • pp.69-70
    • /
    • 2006
  • 고주파 유도가열 연소합성법에 의해 2분 이내의 짧은 시간에 단일 공정으로 ZrC와 3Si의 혼합 분말로부터 $ZrSi_2-SiC$ 복합재료의 합성과 치밀화가 동시에 이루어졌다. 60MPa의 압력과 90%의 고주파 출력을 가하여 제조된 복합재료의 상대밀도는 약 97%였으며, $ZrSi_2$ 상과 SiC의 평균 결정립 크기는 약154nm와 78nm이었다. 비커스 경도계를 이용하여 측정된 $ZrSi_2-SiC$ 복합 재료의 경도와 파괴인성 값은 각각 $1180kg/mm^2$$2.5MPa{\cdot}m^{1/2}$ 이었다.

  • PDF