• Title/Summary/Keyword: High-fidelity simulation

Search Result 155, Processing Time 0.022 seconds

Verification of the Effects of Student-led Simulation with Team and Problem-Based Learning Class Training during COVID-19 (COVID-19시기의 예비간호사 training을 위한 학생주도 팀기반 문제중심학습 시뮬레이션 수업 효과검증)

  • Hana Kim;Mi-Ock Shim;Jisan Lee
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.27-39
    • /
    • 2023
  • This study aimed to develop SSTPBL (Student-led Simulation with Team and Problem-Based Learning), whichcombines TBL and PBL with a student-led method to strengthen knowledge application, nursing diagnosis ability, and collaboration ability among the core competencies of nurses. Then, SSTPBL was applied to nursing students, and the results were assessed. The data was collected from September 15, 2022, to December 21, 2022, with structured questionnaires and focus group interviews with 51 fourth-year nursing students at a university in A City. The collected data were analyzed using SPSS version 25.0 and topic analysis. As a results, it was effective in simulation experience satisfaction(t = 3.51, p < .01), vSim experience satisfaction(t = 3.50, p < .01), preparation as a prospective nurse(t = 3.73, p < .01), learning self-efficacy(t = 3.87, p < .01), collaborative self-efficacy (t = 4.30, p < .01), problem-solving ability(t = 5.26, p < .01), educational satisfaction(t = 3.54, p < .01), digital health equity(t = 2.18, p < .05). Through the qualitative data's topic analysis, six main topics were derived. The main topics were 'similar to clinical practice', 'difficulty in immersion', 'learning through others', 'learning through self-reflection', 'improving confidence through new experiences' and 'new teaching methods'. Based on the results of this study, it is expected that SSTPBL can be used in various ways as a new training method for prospective nurses in the face of growing clinical practice restrictions after the pandemic.

Development and Effect of Nursing Process Scenarios for Cerebral Infarction: HPS (뇌경색환자 간호과정 시나리오 개발 및 효과: HPS)

  • Jang, Ae Ri;Oh, Moon Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.223-231
    • /
    • 2020
  • The aim of this study was to develop and apply a nursing process simulation scenario for cerebral infarction patients using HPS for nursing students. The effects of this simulation were evaluated and compared with the effects of traditional teaching methods. This study was conducted on 3rd grade students at the College of Nursing from December 7 to December 26, 2018. This study examined 38 subjects in the experimental group and 39 in the control group. This research went through the analysis phase, design phase, and development phase for the development and application of the scenario. The confidence, knowledge, and performance before and after the intervention in the experimental and control groups were analyzed using a t-test. This study developed a simulation scenario based on a nursing process for cerebral infarct patients and was designed to infer three nursing diagnoses. Both groups showed significant pre-post scores except for the clinical performance. The experimental group had higher post-score scores and greater difference between the post-test and pre-test. This study is meaningful in that a standardized scenario of nursing process of infarct patients was developed. In addition, the developed scenario shows the possibility of developing teaching and learning methods that can integrate theoretical learning and practice.

Analysis of Students' Clinical Judgment Process During Nursing Simulation (간호시뮬레이션에서 나타나는 임상판단과정 분석)

  • Shim, Kaka;Shin, Hyunsook;Rim, Dahae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.130-138
    • /
    • 2018
  • This study was a descriptive study, analyzing the clinical judgment process that occurs in a simulation of practice education for nursing students applying to LCJR. Subjects were two nursing college students in S city. Fever scenario and apnea scenario, including mock patient, were implemented. Data collection was conducted between September, 2013 and December, 2014. Data analysis was performed using descriptive statistics, paired t-test, and Pearson's correlation of PASW statistics 18.0 program. The result of this study revealed that the clinical judgment scores of nursing college students were 30.50 for males and 29.32 for females. Nursing Clinical judgment score for the apnea scenario was higher than the score for the febrile scenario, and nursing students' self-evaluation and professors' evaluation showed a significant correlation with respect to the responding domain. In comparison the student and faculty ratings, domain of interpreting and domain of reflecting were significant This study will provide educators with foundational knowledge of program development to enhance nursing students' clinical judgment abilities. We suggest more discussion on their nursing practice and judgment during debriefing session may be beneficial for students.

Applying deep learning based super-resolution technique for high-resolution urban flood analysis (고해상도 도시 침수 해석을 위한 딥러닝 기반 초해상화 기술 적용)

  • Choi, Hyeonjin;Lee, Songhee;Woo, Hyuna;Kim, Minyoung;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.641-653
    • /
    • 2023
  • As climate change and urbanization are causing unprecedented natural disasters in urban areas, it is crucial to have urban flood predictions with high fidelity and accuracy. However, conventional physically- and deep learning-based urban flood modeling methods have limitations that require a lot of computer resources or data for high-resolution flooding analysis. In this study, we propose and implement a method for improving the spatial resolution of urban flood analysis using a deep learning based super-resolution technique. The proposed approach converts low-resolution flood maps by physically based modeling into the high-resolution using a super-resolution deep learning model trained by high-resolution modeling data. When applied to two cases of retrospective flood analysis at part of City of Portland, Oregon, U.S., the results of the 4-m resolution physical simulation were successfully converted into 1-m resolution flood maps through super-resolution. High structural similarity between the super-solution image and the high-resolution original was found. The results show promising image quality loss within an acceptable limit of 22.80 dB (PSNR) and 0.73 (SSIM). The proposed super-resolution method can provide efficient model training with a limited number of flood scenarios, significantly reducing data acquisition efforts and computational costs.

Relationship between Non-technical Skills and Resuscitation Performance of Nurses' Team in in-situ Simulated Cardiac Arrest (심정지 현장 시뮬레이션에서 일반 간호사의 비기술적 술기와 심폐소생술 수행 간의 관계)

  • Kim, Eun Jung;Lee, Kyeong Ryong
    • Korean Journal of Adult Nursing
    • /
    • v.27 no.2
    • /
    • pp.146-155
    • /
    • 2015
  • Purpose: The aim of this descriptive study was to explore the relationship between non-technical skills (NTSs) and cardiopulmonary resuscitation (CPR) performance of nurses' teams in simulated cardiac arrest in the hospital. Methods: The sample was 28 teams of nurses in one university hospital located in Seoul. A high fidelity simulator was used to enact simulated cardiac arrest. The nurse teams were scored by raters using both the CPR performance checklist and the NTSs checklist. Specifically the CPR performance checklist included critical actions; time elapsed to initiation of critical actions, and quality of cardiac compression. The NTSs checklist was comprised of leadership, communication, mutual performance monitoring, maintenance of guideline, and task management. Data were collected directly from manikin and video recordings. Results: There was a significant difference between the medians of the NTSs and CPR performance (Mann Whitney U=43.5, p=.014). In five subcategories, communication (p=.026), mutual performance monitoring (p=.005), and maintenance of guideline (p=.003) differed significantly with CPR performance in medians. Leadership (p=.053) and task management (p=.080) were not significantly different with CPR performance. Conclusion: The findings indicate that NTSs of teams in addition to technical skills of individual rescuers affect the outcome of CPR. NTSs development and assessment should be considered an integral part of resuscitation training.

Design of an Autonomous Air Combat Guidance Law using a Virtual Pursuit Point for UCAV (무인전투기를 위한 가상 추적점 기반 자율 공중 교전 유도 법칙 설계)

  • You, Dong-Il;Shim, Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.199-212
    • /
    • 2014
  • This paper describes an autonomous air combat guidance law using a Virtual Pursuit Point (VPP) in one-on-one close engagement for Unmanned Combat Aerial Vehicle (UCAV). The VPPs that consist of virtual lag and lead points are introduced to carry out tactical combat maneuvers. The VPPs are generated based on fighter's aerodynamic performance and Basic Fighter Maneuver (BFM)'s turn circle, total energy and weapon characteristics. The UCAV determines a single VPP and executes pursuit maneuvers based on a smoothing function which evaluates probabilities of the pursuit types for switching maneuvers with given combat states. The proposed law is demonstrated by high-fidelity real-time combat simulation using commercial fighter model and X-Plane simulator.

Effect of Human Patient Simulator-based Education on Self-directed Learning and Collective Efficacy (환자시뮬레이터활용교육에서의 자기주도적 학습능력과 집단효능감의 변화)

  • Jun, Hoa-Yun;Cho, Young-Im;Park, Kyung-Eun;Kim, Ji-Mee
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.293-302
    • /
    • 2012
  • The purpose of this study was to identify the effect of human patient simulator(HPS)-based education on self-directed learning(SDL) and collective efficacy(CE) for nursing students. This study design was one group pre-posttest. The subjects were 2nd grade 92 students enrolling in the integrated practice. They have no previous experience of HPS-based education. HPS-based education included team based learning, skill training, taking a high-fidelity simulation with Medical Education Technologies, Inc (METI) simulator and being debriefed during 12 weeks. The pretest and posttest were conducted to understand the improvement in SDL and CE. After the subjects had participated in the HPS-based education, they showed statistically significant higher SDL(t=4.24, p=0.000) than before. However, there was no significant change in CE. Based on the results, this study suggests that SDL for nursing students were significantly improved by HPS-base education.

A Study on Three-dimensional Effects and Deformation of Textile Fabrics: Dynamic Deformations of Silk Fabrics

  • Kim, Minjin;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.17 no.6
    • /
    • pp.28-43
    • /
    • 2013
  • Recent trends toward the collaborations among various sectors of academia and research areas have brought interests and significances in new activities especially in the fashion and textile areas. One of the collaboration examples is the recent research projects on 3D virtual clothing systems based on the 3D CAD software. The 3D virtual clothing systems provide simulated apparels with high degrees of fidelity in terms of color, texture, and structural details. However, since real fabrics exhibit strong nonlinearity, anisotropy, viscoelasticity, and hysteresis, the 3D virtual clothing systems need fine tuning parameters for the simulation process. In this study, characteristics of silk fabrics, which are woven by using degummed silk and raw silk yarns, are being analyzed and compared. Anisotropic properties may be measured as warp and filling direction properties separately in woven fabrics, such as warp tensile stress or filling bending rigidity. Hysteretic properties may be measured as bending hysteresis or shear hysteresis by using KES measurements. These data provide deformation-force relationships of the fabric specimen. Three-dimensional effects obtained when using these characteristic fabrics are also analyzed. The methods to control the three-dimensional appearance of the sewn fabric specimens when utilizing a programmable microprocessor-based motor device, as prepared in this study, are presented. Based on the physical and mechanical properties measured when using the KES equipment, the property parameters are being into a 3-dimensional virtual digital clothing system, in order to generate a virtual clothing product based on the measured silk fabric properties.

A Design of Handling Quality Assessment Environment Based on FLIGHTLAB Model Using Legacy Simulator (레거시 시뮬레이터를 활용한 FLIGHTLAB 모델 기반의 조종성 평가 환경 설계 연구)

  • Yang, Chang Deok;Lee, Seung Deok;Cho, Hwan Heui;Jung, Dong Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.530-536
    • /
    • 2016
  • The handling quality simulator including high fidelity flight mechanics model is indispensable component to design and verify the flight control system. Korea Aerospace Industries, LTD. (KAI) has been performing LCH (Light Civil Helicopter) core technology development program regarding automatic flight control system (AFCS) software development. And KAI has been developing flight mechanics model using FLIGHTLAB to design and evaluate the AFCS flight control law. This paper presents the handling quality assessment environment development results through the combining FLIGHTLAB with a legacy simulator. And this paper details the FLIGHTLAB model, application development process and FLIGHTLAB interface design. The developed handling quality assessment environment has been demonstrated with the ADS-33E hover and pirouette MTE (Mission Task Element) maneuver simulation.

Application of TULIP/STREAM code in 2-D fast reactor core high-fidelity neutronic analysis

  • Du, Xianan;Choe, Jiwon;Choi, Sooyoung;Lee, Woonghee;Cherezov, Alexey;Lim, Jaeyong;Lee, Minjae;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1871-1885
    • /
    • 2019
  • The deterministic MOC code STREAM of the Computational Reactor Physics and Experiment (CORE) laboratory of Ulsan National Institute of Science and Technology (UNIST), was initially designed for the calculation of pressurized water reactor two- and three-dimensional assemblies and cores. Since fast reactors play an important role in the generation-IV concept, it was decided that the code should be upgraded for the analysis of fast neutron spectrum reactors. This paper presents a coupled code - TULIP/STREAM, developed for the fast reactor assembly and core calculations. The TULIP code produces self-shielded multi-group cross-sections using a one-dimensional cylindrical model. The generated cross-section library is used in the STREAM code which solves eigenvalue problems for a two-dimensional assembly and a multi-assembly whole reactor core. Multiplication factors and steady-state power distributions were compared with the reference solutions obtained by the continuous energy Monte-Carlo code MCS. With the developed code, a sensitivity study of the number of energy groups, the order of anisotropic PN scattering, and the multi-group cross-section generation model was performed on the keff and power distribution. The 2D core simulation calculations show that the TULIP/STREAM code gives a keff error smaller than 200 pcm and the root mean square errors of the pin-wise power distributions within 2%.