• 제목/요약/키워드: High-fidelity simulation

검색결과 155건 처리시간 0.029초

Aerodynamic Analysis of Tilt-Rotor Unmanned Aerial Vehicle with Computational Fluid Dynamics

  • Kim Cheol-Wan;Chung Jin-Deog
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.561-568
    • /
    • 2006
  • CFD simulation for one of tilt-rotor UAV configurations, TR-E2S1, was performed to investigate its aerodynamic characteristics. Control surfaces such as elevator and rudder were deflected and wing incidence angle was changed. Also aerodynamic stabilities were analyzed with the variation of pitch and yaw angles. The comparison of CFD with wind tunnel test results reveals the same trends in the aerodynamic characteristics and stabilities. However 12% scale wind tunnel test model is too small for accurate data collection and should build a high fidelity model for quantitative data comparison.

A recursive multibody model of a tracked vehicle and its interaction with flexible ground

  • Han, Ray P.S.;Sander, Brian S.;Mao, S.G.
    • Structural Engineering and Mechanics
    • /
    • 제11권2호
    • /
    • pp.133-149
    • /
    • 2001
  • A high-fidelity model of a tracked vehicle traversing a flexible ground terrain with a varying profile is presented here. In this work, we employed a recursive formulation to model the track subsystem. This method yields a minimal set of coordinates and hence, computationally more efficient than conventional approaches. Also, in the vehicle subsystem, the undercarriage frame is assumed to be connected to the chassis by a revolute joint and a spring-damper unit. This increase in system mobility makes the model more realistic. To capture the vehicle-ground interaction, a Winkler-type foundation with springs-dampers is used. Simulation runs of the integrated tracked vehicle system for vibrations for four varying ground profiles are provided.

Multi-Objective Design Exploration for Multidisciplinary Design Optimization Problems

  • Obayashi Shigeru;Jeong Shinkyu;Chiba Kazuhisa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach, Multi-Objective Design Exploration (MODE), is presented to address Multidisciplinary Design Optimization (MDO) problems by CFD-CSD coupling. MODE reveals the structure of the design space from the trade-off information and visualizes it as a panorama for Decision Maker. The present form of MODE consists of Kriging Model, Adaptive Range Multi Objective Genetic Algorithms, Analysis of Variance and Self-Organizing Map. The main emphasis of this approach is visual data mining. An MDO system using high fidelity simulation codes, Navier-Stokes solver and NASTRAN, has been developed and applied to a regional-jet wing design. Because the optimization system becomes very computationally expensive, only brief exploration of the design space has been performed. However, data mining result demonstrates that design knowledge can produce a good design even from the brief design exploration.

  • PDF

Study for the Information Operations for Long Unattended Periods of Time at the Space System

  • Kim, Han-Woong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권2호
    • /
    • pp.61-68
    • /
    • 2003
  • The space systems are being operated in a uncertain space environment and are desired to have autonomous capability for long periods of time without frequent telecommunications with the ground station. At the same time, requirements for new set of satellite system set of projects/systems calling for "autonomous" operations for long unattended periods of time are emerging. Since, by the nature of space systems, it is desired to perform its mission flawlessly and also it is of extreme importance to have fault-tolerant sensors and actuators for the purpose of validating science measurement data for the mission success. This studies focused on the identification/demonstration of critical technology innovations that will be applied to the Validation Control System.

신경회로망과 퍼지필터를 사용한 근전도신호의 기능변별에 관한 연구 (A Study on Function Discrimination for EMG Signals Using Neural Network and Fuzzy Filter)

  • 장영건;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권3호
    • /
    • pp.355-364
    • /
    • 1994
  • The most important requirement for the controller of a prosthetic arm is that it has a high fidelity discriminator where the motion control may be performed open loop using EMG signals as a control source. Therefore, it is very effective method to reduce the influence of misclassification of classifier for the total system performance. This paper presents the new function discrimination method which combines MLP classifier and frizzy filter by stages for the requirement. The major advantage of MLP is a consistent learning capability for the easy adaptation to environments. The fuzzy filter uses all informations of MLP outputs and prior EMG activity informations which increase as the experience increases. That property is superior to one which uses maximum output of MLP in view of information amounts and quality. Simulation result shows that proposed method is superior to the probabilistic model, MLP model and the combined model of both in the respect of discrimination quaity.

  • PDF

예혼합화염의 불안정성 및 비선형적 거동에 관한 수치적 연구 (Numerical Study on the Premixed Flame Instability and Nonlinear Behavior)

  • 강상훈;백승욱;임홍근
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.281-286
    • /
    • 2005
  • To understand fundamental characteristics of combustion in a small scale device, the effects of the momentum and heat loss on the stability of laminar premixed flames in a narrow channel are investigated by two-dimensional high-fidelity numerical simulation. A general finding is that momentum loss promotes the Saffman-Taylor (S-T) instability which is additive to the Darrieus-Landau (D-L) instabilities, while the heat loss effects result in an enhancement of the diffusive-thermal (D-T) instability. These effects are also valid in nonlinear behavior of the premixed flame. The simulations of multiple cell interactions are also conducted with heat and momentum loss effects.

  • PDF

PDE 응용을 위한 $H_2-O_2$-Ar 혼합물에서의 직접 기폭 과정에 대한 수치 해석 (Numerical Analysis of Direct Detonation Initiation Processes in a $H_2-O_2$-Ar Mixture for Pulse Detonation Engine Applications)

  • Kyoung Su Im;Chang Kee Kim;Jun Sik Hwang
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.204-207
    • /
    • 2003
  • The present paper reports high-fidelity simulation of direct initiation processes of cylindrical detonation waves by concentrated energy deposition. The goal is to understand the underpinning mechanisms in failed or successful detonation initiation processes. We employed the Space-Time CESE method to solve the reacting flow equations, including realistic finite-rate chemistry model of the nine species and twenty-four reactions for H$_2$-O$_2$-Ar mixtures. Detailed results of sub-critical, critical. and supercritical initiation process are reported.

  • PDF

Reynolds stress correction by data assimilation methods with physical constraints

  • Thomas Philibert;Andrea Ferrero;Angelo Iollo;Francesco Larocca
    • Advances in aircraft and spacecraft science
    • /
    • 제10권6호
    • /
    • pp.521-543
    • /
    • 2023
  • Reynolds-averaged Navier-Stokes (RANS) models are extensively employed in industrial settings for the purpose of simulating intricate fluid flows. However, these models are subject to certain limitations. Notably, disparities persist in the Reynolds stresses when comparing the RANS model with high-fidelity data obtained from Direct Numerical Simulation (DNS) or experimental measurements. In this work we propose an approach to mitigate these discrepancies while retaining the favorable attributes of the Menter Shear Stress Transport (SST) model, such as its significantly lower computational expense compared to DNS simulations. This strategy entails incorporating an explicit algebraic model and employing a neural network to correct the turbulent characteristic time. The imposition of realizability constraints is investigated through the introduction of penalization terms. The assimilated Reynolds stress model demonstrates good predictive performance in both in-sample and out-of-sample flow configurations. This suggests that the model can effectively capture the turbulent characteristics of the flow and produce physically realistic predictions.

Validation study on numerical simulation of RC response to close-in blast with a fully coupled model

  • Gong, Shunfeng;Lu, Yong;Tu, Zhenguo;Jin, Weiliang
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.283-300
    • /
    • 2009
  • The characteristic response of a structure to blast load may be divided into two distinctive phases, namely the direct blast response during which the shock wave effect and localized damage take place, and the post-blast phase whereby progressive collapse may occur. A reliable post-blast analysis depends on a sound understanding of the direct blast effect. Because of the complex loading environment and the stress wave effects, the analysis on the direct effect often necessitates a high fidelity numerical model with coupled fluid (air) and solid subdomains. In such a modelling framework, an appropriate representation of the blast load and the high nonlinearity of the material response is a key to a reliable outcome. This paper presents a series of calibration study on these two important modelling considerations in a coupled Eulerian-Lagrangian framework using a hydrocode. The calibration of the simulated blast load is carried out for both free air and internal explosions. The simulation of the extreme dynamic response of concrete components is achieved using an advanced concrete damage model in conjunction with an element erosion scheme. Validation simulations are conducted for two representative scenarios; one involves a concrete slab under internal blast, and the other with a RC column under air blast, with a particular focus on the simulation sensitivity to the mesh size and the erosion criterion.

시뮬레이션 기반의 풍력발전제어시스템 최적화 기법에 관한 연구 (A Study on Simulation-based Optimization for Wind Turbine Controller Tuning)

  • 전경언;노태수;김국선;김지언
    • 전력전자학회논문지
    • /
    • 제16권5호
    • /
    • pp.503-510
    • /
    • 2011
  • 본 논문에서는 기설계된 풍력발전제어시스템의 최적화에 관한 연구로서, 특히 블레이드 피치제어기 및 발전기 토크 제어기의 제어 변수 튜닝 (Tuning) 기법을 제안하고자 한다. 일반적으로 제어기 설계는 간략화된 수학적 모델을 기반으로 이루어지고 실제 적용시 설계단계에서 고려하지 않았거나 수학적 표현이 불가능한 불확실성을 제어 시스템에 반영하기 위하여 반복적인 시험 단계가 필요하다. 본 논문에서는 풍력발전시스템 비선형 시뮬레이션 소프트웨어와 최적화 기법을 이용하여, 풍력발전기의 로터 회전 속도 변화, 발전기 출력 변동, 동력 전달축 비틀림 진동을 최소화하기 위한 제어기 튜닝 절차 및 결과를 제시하고자 한다. 제어기 기본 설계안과 최적화된 최종 설계안의 비교를 통하여 방법의 타당성을 예시하였다.