• Title/Summary/Keyword: High-fidelity simulation

Search Result 151, Processing Time 0.025 seconds

Effects of Maternity Nursing Simulation using High-fidelity Patient Simulator for Undergraduate Nursing Students (고충실도 시뮬레이터를 활용한 모성간호 시뮬레이션 교육의 효과)

  • Kim, Ahrin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.177-189
    • /
    • 2016
  • This study examined the effectiveness of maternity nursing simulations using a high-fidelity simulator for undergraduate nursing students. One-group pretest-posttest design was used. The simulation-based education program consisted of three sessions, including the clinical scenarios about prenatal, childbearing and postpartum care. The program provided for 3 weeks in November 2014. Data was collected before and after the simulation education using self-reported questionnaires, which included simulation effectiveness, problem solving ability, communication skills and self-confidence in maternity nursing. The data of 83 participants were analyzed using the IBM SPSS 20.0 program. After simulation education, the overall score of the simulation effectiveness was 17.4 out of 26.0. Communication skill (t=4.58, p=<.001) and self-confidence in maternity nursing (t=9.70, p=<.001) increased significantly in the posttest. On the other hand, there was no significant change in the problem solving ability. The simulation effectiveness correlated significantly with the problem solving ability (r=.494, p<.001), communication skill (r=.361, p<.001), and self-confidence in maternity nursing (r=.497, p<.001) after simulation-based education. These findings suggest that the high-fidelity simulation in maternity nursing education could be used not only to enhance the nursing competency, but also to deal with the limitations of the clinical practicum in the current situation.

Numerical simulation of concrete confined by transverse reinforcement

  • Song, Zhenhuan;Lu, Yong
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.23-41
    • /
    • 2011
  • The behaviour of concrete confined by transverse reinforcement is a classical topic. Numerous studies have been conducted to establish the stress-strain relationships for concrete under various confining reinforcement arrangements. Many empirical and semi-empirical formulas exist. Simplified analytical models have also been proposed to evaluate the increase in the strength and ductility of confined concrete. However, relatively few studies have been conducted to utilise advanced computational models for a realistic simulation of the behaviour of concrete confined by transverse reinforcement. As a matter of fact, high fidelity simulations using the latest numerical solvers in conjunction with advanced material constitutive models can be a powerful means to investigating the mechanisms underlying the confining effects of different reinforcement schemes. This paper presents a study on the use of high fidelity finite element models for the investigation of the behaviour of concrete confined by stirrups, as well as the interpretation of the numerical results. The development of the models is described in detail, and the essential modelling considerations are discussed. The models are then validated by simulating representative experimental studies on short columns with different confining reinforcement schemes. The development and distribution of the confining stress and the subsequent increase in the axial strength are examined. The models are shown to be capable of reproducing the behaviour of the confined concrete realistically, paving a way for systematic parametric studies and investigation into complicated confinement, load combination, and dynamic loading situations.

A Comparative Study on Learning Outcomes according to the Integration Sequences of S-PBL in Nursing Students: Randomized Crossover Design (S-PBL의 연계순서에 따른 간호대학생의 학습성과 비교: 무작위 교차설계)

  • Yun, So Young;Choi, Ja Yun
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.1
    • /
    • pp.92-103
    • /
    • 2019
  • Purpose: This study aimed to compare the effects of simulation integrated with problem based learning (S-PBL) according to the sequences of problem-based learning (PBL) and high fidelity simulation training (HFS) on knowledge, clinical performance, clinical judgment, self-confidence, and satisfaction in fourth-grade nursing students. Methods: In this randomized crossover design study, four S-PBLs on medical-surgical nursing were applied alternatively to two randomly-assigned groups of 26 senior nursing students for 8 weeks. The collected data were analyzed using an independent t-test. Results: The method of administering PBL prior to HFS led to significantly higher scores on knowledge (t=2.28, p=.025) as compared to the method of administering HFS prior to PBL. However, the latter method led to significantly higher scores on clinical performance (t=-6.49, p<.001) and clinical judgment (t=-4.71, p<.001) as compared to the method of administering PBL prior to HFS. There were no differences in the effect of the two methods on self-confidence (t=1.53, p=.128) and satisfaction (t=1.28, p=.202). Conclusion: The integration sequences of S-PBL was associated with different learning outcomes. Therefore, when implementing S-PBL, it is necessary to consider the educational goal to executes an appropriate sequence of integration.

RANS Simulation of a Tip-Leakage Vortex on a Ducted Marine Propulsor

  • Kim, Jin;Eric Peterson;Frederick Stern
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.10-30
    • /
    • 2004
  • High-fidelity RANS simulations are presented for a ducted marine propulsor, including verification & validation (V&V) using available experimental fluid dynamics (EFD) data. CFDSHIP-IOWA is used with $\textsc{k}-\omega$ turbulence model and extensions for relative rotating coordinate system and Chimera overset grids. The mesh interpolation code PEGASUS is used for the exchange of the flow information between the overset grids. Intervals V&V for thrust, torque, and profile averaged radial velocity just downstream of rotor tip are reasonable in comparison with previous results. Flow pattern displays interaction and merging of tip-leakage and trailing edge vortices. In interaction region, multiple peaks and vorticity are smaller, whereas in merging region, better agreement with EFD. Tip-leakage vortex core position, size, circulation, and cavitation patterns for $\sigma=5$ also show a good agreement with EFD, although vortex core size is larger and circulation in interaction region is smaller.

High-Fidelity Ship Airwake CFD Simulation Method Using Actual Large Ship Measurement and Wind Tunnel Test Results (대형 비행갑판을 갖는 함정과 풍동시험 결과를 활용한 고신뢰도 함정 Airwake 예측)

  • Jindeog Chung;Taehwan Cho;Sunghoon Lee;Jaehoon Choi;Hakmin Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.135-145
    • /
    • 2023
  • Developing high-fidelity Computational Fluid Dynamics (CFD) simulation methods used to evaluate the airwake characteristics along a flight deck of a large ship, the various kind of data such as actual ship measurement and wind tunnel results are required to verify the accuracy of CFD simulation. Inflow velocity profile at the bow, local unsteady flow field data around the flight deck, and highly reliable wind tunnel data which were measured after reviewing Atmospheric Boundary Layer (ABL) simulation and Reynolds Number effects were also used to determine the key parameters such as turbulence model, time resolution and accuracy, grid resolution and type, inflow condition, domain size, simulation length, and so on in STAR CCM+. Velocity ratio and turbulent intensity difference between Full-scale CFD and actual ship measurement at the measurement points show less than 2% and 1.7% respectively. And differences in velocity ratio and turbulence intensity between wind tunnel test and small-scale CFD are both less than 2.2%. Based upon this fact, the selected parameters in CFD simulation are highly reliable for a specific wind condition.

Reevaluation of failure criteria location and novel improvement of 1/4 PCCV high fidelity simulation model under material uncertainty quantifications

  • Bu-Seog Ju;Ho-Young Son
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3493-3505
    • /
    • 2023
  • Reactor containment buildings serve as the last barrier to prevent radioactive leakage due to accidents and their safety is crucial in overpressurization conditions. Thus, the Regulatory Guide (RG) 1.216 has mentioned the global strain as one of failure criteria in the free-field for cylindrical prestressed concrete containment vessels (PCCV) subject to internal pressure. However, there is a limit that RG 1.216 shows the free-field without the specific locations of failure criteria and also the global strain corresponding to only azimuth 135° has been mentioned in NUREG/CR-6685, regardless of the elevations of the structure. Therefore, in order to reevaluate the failure criteria of the 1:4 scaled PCCV, the high fidelity simulation model based on the experimental test was significantly validated in this study, and it was interesting to find that the experimental and numerical result was very close to each other. In addition, for the consideration of the material uncertainties, the Latin hypercube method was used as a statistical approach. Consequently, it was revealed that the radial displacements of various azimuth area such as 120°, 135°, 150°, 180° and 210° at elevations 4680 mm and 6,200 mm can represent as the global deformation at the free-field, obtained from the statistical approach.

Dynamic characteristics of single door electrical cabinet under rocking: Source reconciliation of experimental and numerical findings

  • Jeon, Bub-Gyu;Son, Ho-Young;Eem, Seung-Hyun;Choi, In-Kil;Ju, Bu-Seog
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2387-2395
    • /
    • 2021
  • Seismic qualifications of electrical equipment, such as cabinet systems, have been emerging as the key area of nuclear power plants in Korea since the 2016 Gyeongju earthquake, including the high-frequency domain. In addition, electrical equipment was sensitive to the high-frequency ground motions during the past earthquake. Therefore, this paper presents the rocking behavior of the electrical cabinet system subjected to Reg. 1.60 and UHS. The high fidelity finite element (FE) model of the cabinet related to the shaking table test data was developed. In particular, the first two global modes of the cabinet from the experimental test were 16 Hz and 24 Hz, respectively. In addition, 30.05 Hz and 37.5 Hz were determined to be the first two local modes in the cabinet. The high fidelity FE model of the cabinet using the ABAQUS platform was extremely reconciled with shaking table tests. As a result, the dynamic properties of the cabinet were sensitive to electrical instruments, such as relays and switchboards, during the shaking table test. In addition, the amplification with respect to the vibration transfer function of the cabinet was observed on the third floor in the cabinet due to localized impact corresponding to the rocking phenomenon of the cabinet under Reg.1.60 and UHS. Overall, the rocking of the cabinet system can be caused by the low-frequency oscillations and higher peak horizontal acceleration.

Using Design to Make Doffing of Personal Protective Equipment Safer for Healthcare Workers (의료종사자의 안전한 개인보호장비 탈의를 위한 공간 설계에 관한 연구)

  • Matic, Zorana;Oh, Yeinn;Lim, Lisa
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.26 no.3
    • /
    • pp.17-26
    • /
    • 2020
  • Purpose: This paper presents research evidence that the environmental design of the doffing area in a biocontainment unit (BCU) can have a measurable impact on increasing the safety of frontline healthcare workers (HCW) during doffing of high-level personal protective equipment (PPE), and proposes optimized biocontainment unit design. Methods: From 2016 to 2019, The SimTigrate Design Lab conducted 3 consecutive studies, focusing on ways in which the built environment may support or hinder safe doffing. In the first study, to identify the risky behaviors, we observed 56 simulation exercises with HCWs in 4 BCUs and 1 high-fidelity BCU mockup. In the second study, we tested the effectiveness of a redesigned doffing area on improving the HCWs performance and used simulation, observation, and rapid prototyping in 1 high-fidelity mockup of a doffing area. In a follow-up study, we used simulation and co-design with HCWs to optimize the design of a safer doffing area in a full-size pediatric BCU mock-up. Results: We identified 11 specific risky behaviors potentially leading to occupational injury, or contamination of the PPE, or of the environment. We developed design strategies to create a space for safer doffing. In the second study, in a redesigned doffing area, the overall performance of HCW improved, and we observed a significant decrease in the number of risky behaviors; some risky behaviors were eliminated. There was a significant decrease in physical and cognitive load for the HCWs. Finally, we propose an optimized layout of a BCU for a safer process of PPE doffing. Implications: The proposed BCU design supports better staff communication, efficiency, and automates safer behaviors. Our findings can be used to develop design guidelines for spaces where patients with other highly infectious diseases are treated when the safety of the patient-facing HCWs is of critical importance.

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.

Flight Dynamics Analyses of a Propeller-Driven Airplane (II): Building a High-Fidelity Mathematical Model and Applications

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.356-365
    • /
    • 2014
  • This paper is the second in a series and aims to build a high-fidelity mathematical model for a propeller-driven airplane using the propeller's aerodynamics and inertial models, as developed in the first paper. It focuses on aerodynamic models for the fuselage, the main wing, and the stabilizers under the influence of the wake trailed from the propeller. For this, application of the vortex lattice method is proposed to reflect the propeller's wake effect on those aerodynamic surfaces. By considering the maneuvering flight states and the flow field generated by the propeller wake, the induced velocity at any point on the aerodynamic surfaces can be computed for general flight conditions. Thus, strip theory is well suited to predict the distribution of air loads over wing components and the viscous flow effect can be duly considered using the 2D aerodynamic coefficients for the airfoils used in each wing. These approaches are implemented in building a high-fidelity mathematical model for a propeller-driven airplane. Flight dynamic analysis modules for the trim, linearization, and simulation analyses were developed using the proposed techniques. The flight test results for a series of maneuvering flights with a scaled model were used for comparison with those obtained using the flight dynamics analysis modules to validate the usefulness of the present approaches. The resulting good correlations between the two data sets demonstrate that the flight characteristics of the propeller-driven airplane can be analyzed effectively through the integrated framework with the propeller and airframe aerodynamic models proposed in this study.