• Title/Summary/Keyword: High-fidelity Simulation

Search Result 158, Processing Time 0.025 seconds

Effects of High-Fidelity Simulation-Based Training of Nursing Students according to their Learning Styles (일 대학 간호학생의 학습유형별 시뮬레이션 교육 효과)

  • Kim, Soon-Ok;Pak, So-Young
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.1046-1057
    • /
    • 2013
  • The purpose of this study was to establish basic materials for providing a learning type specific simulation education through identifying the differences in self-efficacy, problem solving ability and clinical competence before and after a learning type specific simulation education, with 145 3rd-year nursing students at a university as the study subjects. This study is a single-group, before-and-after designed experiment for verifying the learning type specific effects after simulation education. As a result of the experiment on the learning types of nursing students, the adaptors were seen to be the most, and the after-simulation education problem solving ability (F=5.015, p = 0.02) and the after-education clinical competence (F=3.288, p = 0.02) showed statistically significant differences. From which, based on the fact that the convergers were seen to be significantly higher than the adaptors and the divergers were higher than the adaptors in regard to problem solving ability, and the fact that the convergers were seen to be significantly higher than the adaptors in regard to clinical competence, it was possible to ascertain that there are differences in the effects of learning type specific simulation education. However, self-efficacy did not show any statistically significant differences. Based on these results, it can be expected that a simulation education by learning types can be provided.

Aerodynamic Analysis of Tilt-Rotor Unmanned Aerial Vehicle with Computational Fluid Dynamics

  • Kim Cheol-Wan;Chung Jin-Deog
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.561-568
    • /
    • 2006
  • CFD simulation for one of tilt-rotor UAV configurations, TR-E2S1, was performed to investigate its aerodynamic characteristics. Control surfaces such as elevator and rudder were deflected and wing incidence angle was changed. Also aerodynamic stabilities were analyzed with the variation of pitch and yaw angles. The comparison of CFD with wind tunnel test results reveals the same trends in the aerodynamic characteristics and stabilities. However 12% scale wind tunnel test model is too small for accurate data collection and should build a high fidelity model for quantitative data comparison.

A recursive multibody model of a tracked vehicle and its interaction with flexible ground

  • Han, Ray P.S.;Sander, Brian S.;Mao, S.G.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.133-149
    • /
    • 2001
  • A high-fidelity model of a tracked vehicle traversing a flexible ground terrain with a varying profile is presented here. In this work, we employed a recursive formulation to model the track subsystem. This method yields a minimal set of coordinates and hence, computationally more efficient than conventional approaches. Also, in the vehicle subsystem, the undercarriage frame is assumed to be connected to the chassis by a revolute joint and a spring-damper unit. This increase in system mobility makes the model more realistic. To capture the vehicle-ground interaction, a Winkler-type foundation with springs-dampers is used. Simulation runs of the integrated tracked vehicle system for vibrations for four varying ground profiles are provided.

Multi-Objective Design Exploration for Multidisciplinary Design Optimization Problems

  • Obayashi Shigeru;Jeong Shinkyu;Chiba Kazuhisa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach, Multi-Objective Design Exploration (MODE), is presented to address Multidisciplinary Design Optimization (MDO) problems by CFD-CSD coupling. MODE reveals the structure of the design space from the trade-off information and visualizes it as a panorama for Decision Maker. The present form of MODE consists of Kriging Model, Adaptive Range Multi Objective Genetic Algorithms, Analysis of Variance and Self-Organizing Map. The main emphasis of this approach is visual data mining. An MDO system using high fidelity simulation codes, Navier-Stokes solver and NASTRAN, has been developed and applied to a regional-jet wing design. Because the optimization system becomes very computationally expensive, only brief exploration of the design space has been performed. However, data mining result demonstrates that design knowledge can produce a good design even from the brief design exploration.

  • PDF

Study for the Information Operations for Long Unattended Periods of Time at the Space System

  • Kim, Han-Woong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.61-68
    • /
    • 2003
  • The space systems are being operated in a uncertain space environment and are desired to have autonomous capability for long periods of time without frequent telecommunications with the ground station. At the same time, requirements for new set of satellite system set of projects/systems calling for "autonomous" operations for long unattended periods of time are emerging. Since, by the nature of space systems, it is desired to perform its mission flawlessly and also it is of extreme importance to have fault-tolerant sensors and actuators for the purpose of validating science measurement data for the mission success. This studies focused on the identification/demonstration of critical technology innovations that will be applied to the Validation Control System.

A Study on Function Discrimination for EMG Signals Using Neural Network and Fuzzy Filter (신경회로망과 퍼지필터를 사용한 근전도신호의 기능변별에 관한 연구)

  • 장영건;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.355-364
    • /
    • 1994
  • The most important requirement for the controller of a prosthetic arm is that it has a high fidelity discriminator where the motion control may be performed open loop using EMG signals as a control source. Therefore, it is very effective method to reduce the influence of misclassification of classifier for the total system performance. This paper presents the new function discrimination method which combines MLP classifier and frizzy filter by stages for the requirement. The major advantage of MLP is a consistent learning capability for the easy adaptation to environments. The fuzzy filter uses all informations of MLP outputs and prior EMG activity informations which increase as the experience increases. That property is superior to one which uses maximum output of MLP in view of information amounts and quality. Simulation result shows that proposed method is superior to the probabilistic model, MLP model and the combined model of both in the respect of discrimination quaity.

  • PDF

Numerical Study on the Premixed Flame Instability and Nonlinear Behavior (예혼합화염의 불안정성 및 비선형적 거동에 관한 수치적 연구)

  • Kang, Sang-Hun;Baek, Seung-Wook;Im, Hong G.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.281-286
    • /
    • 2005
  • To understand fundamental characteristics of combustion in a small scale device, the effects of the momentum and heat loss on the stability of laminar premixed flames in a narrow channel are investigated by two-dimensional high-fidelity numerical simulation. A general finding is that momentum loss promotes the Saffman-Taylor (S-T) instability which is additive to the Darrieus-Landau (D-L) instabilities, while the heat loss effects result in an enhancement of the diffusive-thermal (D-T) instability. These effects are also valid in nonlinear behavior of the premixed flame. The simulations of multiple cell interactions are also conducted with heat and momentum loss effects.

  • PDF

Numerical Analysis of Direct Detonation Initiation Processes in a $H_2-O_2$-Ar Mixture for Pulse Detonation Engine Applications (PDE 응용을 위한 $H_2-O_2$-Ar 혼합물에서의 직접 기폭 과정에 대한 수치 해석)

  • Kyoung Su Im;Chang Kee Kim;Jun Sik Hwang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.204-207
    • /
    • 2003
  • The present paper reports high-fidelity simulation of direct initiation processes of cylindrical detonation waves by concentrated energy deposition. The goal is to understand the underpinning mechanisms in failed or successful detonation initiation processes. We employed the Space-Time CESE method to solve the reacting flow equations, including realistic finite-rate chemistry model of the nine species and twenty-four reactions for H$_2$-O$_2$-Ar mixtures. Detailed results of sub-critical, critical. and supercritical initiation process are reported.

  • PDF

Reynolds stress correction by data assimilation methods with physical constraints

  • Thomas Philibert;Andrea Ferrero;Angelo Iollo;Francesco Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.6
    • /
    • pp.521-543
    • /
    • 2023
  • Reynolds-averaged Navier-Stokes (RANS) models are extensively employed in industrial settings for the purpose of simulating intricate fluid flows. However, these models are subject to certain limitations. Notably, disparities persist in the Reynolds stresses when comparing the RANS model with high-fidelity data obtained from Direct Numerical Simulation (DNS) or experimental measurements. In this work we propose an approach to mitigate these discrepancies while retaining the favorable attributes of the Menter Shear Stress Transport (SST) model, such as its significantly lower computational expense compared to DNS simulations. This strategy entails incorporating an explicit algebraic model and employing a neural network to correct the turbulent characteristic time. The imposition of realizability constraints is investigated through the introduction of penalization terms. The assimilated Reynolds stress model demonstrates good predictive performance in both in-sample and out-of-sample flow configurations. This suggests that the model can effectively capture the turbulent characteristics of the flow and produce physically realistic predictions.

Whole-core analysis of Watts bar benchmark with three-dimensional MOC code STREAM3D

  • Murat Serdar Aygul;Wonkyeong Kim;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3255-3267
    • /
    • 2024
  • This paper presents a high-fidelity simulation of the Organization for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) 3D whole-core Watts Bar benchmark using the UNIST in-house STREAM3D (Steady State and Transient Reactor Analysis code with Method of Characteristics) neutronic code. The benchmark encompasses various whole-core exercises, including single physics problems, multiphysics simulations, and depletion problems. When comparing parameters during the zero-power physics tests, including ITC, DBW, CRW, and criticality tests, STREAM3D results indicate a strong agreement with the measured data and KENO-VI. The comparison with the MC21/CTF code in 3D HFP BOC condition demonstrated strong agreement, with only a 0.42% difference in the normalized radial power distribution, a 0.38 K difference in the RMS of the assembly coolant exit temperature, and a mere 4 ppm difference in CBC.