DOI QR코드

DOI QR Code

Whole-core analysis of Watts bar benchmark with three-dimensional MOC code STREAM3D

  • Murat Serdar Aygul (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Wonkyeong Kim (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Deokjung Lee (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2023.12.08
  • Accepted : 2024.03.19
  • Published : 2024.08.25

Abstract

This paper presents a high-fidelity simulation of the Organization for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) 3D whole-core Watts Bar benchmark using the UNIST in-house STREAM3D (Steady State and Transient Reactor Analysis code with Method of Characteristics) neutronic code. The benchmark encompasses various whole-core exercises, including single physics problems, multiphysics simulations, and depletion problems. When comparing parameters during the zero-power physics tests, including ITC, DBW, CRW, and criticality tests, STREAM3D results indicate a strong agreement with the measured data and KENO-VI. The comparison with the MC21/CTF code in 3D HFP BOC condition demonstrated strong agreement, with only a 0.42% difference in the normalized radial power distribution, a 0.38 K difference in the RMS of the assembly coolant exit temperature, and a mere 4 ppm difference in CBC.

Keywords

Acknowledgement

This work was partially supported by Korea Hydro & Nuclear Power Co. Ltd. (No. 2022-Tech-13). This work was partially supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20217810100050).

References

  1. Consortium for Advanced Simulation of Light Water Reactors (CASL), 2014. http://www.casl.gov.
  2. A.T. Godfrey, VERA core physics benchmark progression problem specifications. Consortium for Advanced Simulation of LWRs, 2014.
  3. T. Albagami, P. Rouxelin, A. Abarca, D. Holler, L. Moloko, M. Avramova, K. Ivanov, A. Godfrey, S. Palmtag, TVA Watts Bar Unit 1 Multi-Physics Multi-Cycle Depletion Benchmark Version 2.3.3, Technical Report NEA/EGMPEBV/DOC, 2022. The Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) 2022.
  4. S. Choi, D. Lee, Three-dimensional method of characteristics/diamond-difference transport analysis method in STREAM for whole-core neutron transport calculation, Comput. Phys. Commun. 260 (2021) 107332.
  5. H.G. Joo, J.Y. Cho, K.S. Kim, C.C. Lee, S.Q. Zee, Methods and performance of a three-dimensional whole-core transport code DeCART, Proc. Physor (2004).
  6. B. Collins, S. Stimpson, B.W. Kelley, M.T. Young, B. Kochunas, A. Graham, E. W. Larsen, T. Downar, A. Godfrey, Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT, J. Comput. Phys. 326 (2016) 612-628.
  7. M. Ryu, Y.S. Jung, H.H. Cho, H.G. Joo, Solution of the BEAVRS benchmark using the nTRACER direct whole core calculation code, J. Nucl. Sci. Technol. 52 (7-8) (2015) 961-969.
  8. W. Boyd, S. Shaner, L. Li, B. Forget, K. Smith, The OpenMOC method of characteristics neutral particle transport code, Ann. Nucl. Energy 68 (2014) 43-52.
  9. B.N. Aviles, D.J. Kelly, D.L. Aumiller, D.F. Gill, B.W. Siebert, A.T. Godfrey, B. S. Collins, R.K. Salko, MC21/COBRA-IE and VERA-CS multiphysics solutions to VERA core physics benchmark problem #6, Prog. Nucl. Energy 101 (2017) 338-351.
  10. M.E. Dunn, C. Bentley, S. Goluoglu, L.S. Paschal, L. Petrie, H. Dodds, Development of a continuous energy version of KENO Va, Nucl. Technol. 119 (3) (1997) 306-313.
  11. D. Griesheimer, D. Gill, B. Nease, T. Sutton, M. Stedry, P. Dobreff, D. Carpenter, T. Trumbull, E. Caro, H. Joo, MC21 v. 6.0-A continuous-energy Monte Carlo particle transport code with integrated reactor feedback capabilities. SNA+ MC 2013-Joint International Conference on Supercomputing in Nuclear Applications+ Monte Carlo, EDP Sciences, 2014 06008.
  12. H. Lee, W. Kim, P. Zhang, M. Lemaire, A. Khassenov, J. Yu, Y. Jo, J. Park, D. Lee, MCS-A Monte Carlo particle transport code for large-scale power reactor analysis, Ann. Nucl. Energy 139 (2020) 107276.
  13. S. Choi, C. Lee, D. Lee, Resonance treatment using pin-based pointwise energy slowing-down method, J. Comput. Phys. 330 (2017) 134-155.
  14. S. Choi, K. Smith, H.C. Lee, D. Lee, Impact of inflow transport approximation on light water reactor analysis, J. Comput. Phys. 299 (2015) 352-373.
  15. T.D.C. Nguyen, H. Lee, S. Choi, D. Lee, MCS/TH1D analysis of VERA whole-core multi-cycle depletion problems, Ann. Nucl. Energy 139 (2020) 107271.
  16. B.T. Rearden, M.A. Jessee, SCALE Code System, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2018.
  17. R. Salko, A. Wysocki, T. Blyth, A. Toptan, J. Hu, V. Kumar, C. Dances, W. Dawn, Y. Sung, V. Kucukboyaci, CTF: a modernized, production-level, thermal hydraulic solver for the solution of industry-relevant challenge problems in pressurized water reactors, Nucl. Eng. Des. 397 (2022) 111927.
  18. Y. Zheng, S. Choi, D. Lee, A new approach to three-dimensional neutron transport solution based on the method of characteristics and linear axial approximation, J. Comput. Phys. 350 (2017) 25-44.